Escalera hacia el cielo…de CO2

Imagen de portada: Coral (Autora: Valeria Nascimento). Exposición: «The Ancient Oceans».

Editorial Xerais (2019). Fuente: tiempo.com

Para comprender y predecir la evolución del clima ha sido esencial conocer la influencia de factores como los cambios en la órbita del planeta, actividad solar, la circulación del océano y gases de efecto invernadero, entre otros.

El libro «Os tempos e o clima de Galicia» (2019) (entre cuyos autores figura Xavier Fonseca, creador de «Historias del tiempo» en La Voz de Galicia), dedica uno de sus capítulos al cambio climático.

En él adaptan una gráfica de Miller y col. (2014) con el forzamiento radiativo de varios factores (calculado desde 1850), señalando a los gases de efecto invernadero como responsables del aumento global de temperatura.

El forzamiento radiativo o climático es la diferencia entre la luz solar absorbida por La Tierra y la energía devuelta al espacio. El artículo original incluye más factores y otro gráfico con la parte antropogénica y natural del forzamiento radiativo que hablan por sí solas…

a) Forzamiento radiativo, b) la misma variable, dividida en origen natural y antropogénico. Fuente: Miller y col. (2014).

Entre las emisiones de gases con efecto invernadero destaca el CO2 procedente de la quema de combustibles fósiles desde finales del s.XIX (80% del total de emisiones entre 1970-2010), asociado estrechamente con el calentamiento global. Sobre esta asociación veremos más adelante una gráfica muy ilustrativa (para estamparla en una camiseta, vamos).

El clima del planeta ha sufrido cambios continuos y seguirá cambiando en el futuro, pero esta es la primera vez que lo hace empujado por la actividad humana.

La temperatura promedio del planeta ha subido alrededor de 1ºC en 2017 respecto a la época pre-industrial (1850-1900), con un rango de 0,8-1,2ºC según el IPCC.

Pero un dato aislado como éste ¿es mucho o poco? para saberlo necesitamos ponerlo en contexto a los ciclos climáticos de La Tierra en una serie de tiempo mayor. Y la tenemos...

En la actualidad disponemos de una serie moderna de 800.000 años con medidas directas y precisas de CO2, y estimaciones antiguas que se remontan a cientos de millones de años.

En la serie moderna hay dos grupos de medidas. Por una parte los datos de CO2 del observatorio Mauna Loa (Hawaii) iniciados por C. David Keeling en marzo de 1958.

En ella los niveles de CO2 han aumentado desde 315,71 a 413,92 ppm (junio 2019), una subida del 31% en 6 décadas, cada vez más rápida.

Por otra parte tenemos medidas directas a partir del hielo. Las capas de varios kilómetros de espesor que cubren regiones polares en Groenlandia y la Antártida retienen burbujas de aire que permiten conocer los niveles de CO2 (y estimar la temperatura mediante el fraccionamiento isótopico del agua).

Los testigos de hielo estudiados en Groenlandia se remontan a 123.000 años y los de la Antártida hasta 800.000 años. Las historias que narran son similares respecto al CO2, pero difieren en un aspecto fundamental: en Groenlandia se han registrado cambios bruscos de temperatura (estimados de hasta 8 ºC en 40 años!) ausentes en la Antártida (Alley, 2000).

Capa de hielo Laurentino. Fuente: serc.carleton.edu

Dichos cambios, únicos para el hemisferio norte, se han relacionado con alteraciones en el flujo de calor en el océano ligadas al aumento/retroceso de la capa de hielo Laurentino en Norteamérica entre 95.000-6000 años atrás.

La serie de CO2 más larga disponible en la actualidad es la del testigo de hielo «Dome C» en la Antártida (Jouzel y col. 2007) obtenido durante el proyecto europeo para la extracción de núcleos helados (EPICA).

El «Dome C» incluye 800.000 años, con ocho periodos glaciales y los correspondientes interglaciales, a lo largo de unos 3.200 metros de hielo.

En esta simulación de NOAA pueden observar la variación del CO2 combinando todos estos datos -desde 2017 hasta 800.000 años atrás- incluyendo testigos de hielo de Groenlandia y la Antártida.

CONCLUSIÓN: los niveles de CO2 nunca superaron los 300 ppm en los últimos 800.000 años, hasta comienzos del s.XX.

Y aquí tienen la oscilación temporal de CO2 y temperatura, calculada mediante los isótopos del agua (el fraccionamiento o pérdida del isótopo pesado deuterio (2H)), a partir de muestras del «Dome C». El final de las épocas glaciales se caracteriza por subidas de temperatura de 4-7 ºC a lo largo de unos 5.000 años. Las tasas actuales son unas 10 veces superiores.

La gráfica para estampar en una camiseta. Fuente: NOAA.

Bien. Sigamos atando cabos. Ahora les mostraré otro gráfico menos habitual en los medios de comunicación que da pie a la parte final de esta entrada donde hablaremos del fitoplancton.

Fuente: Scripps CO2 program.

Lo que vemos aquí es la desviación negativa en la relación isotópica del carbono 13 (13C), inversa a la evolución positiva del CO2 (aunque no tan perfecta en series temporales más largas).

EXPLICACIÓN: La quema de combustibles fósiles añade CO2 a la atmósfera con una señal isotópica característica: carece de 14C debido a su antigüedad y está empobrecido en 13C. La gráfica anterior es una de las principales evidencias del origen antropogénico del aumento de CO2.

El carbono posee tres isótopos (12C, 13C y 14C). Los isótopos 12C y 13C son estables y a diferencia del 14C se mantienen constantes en la materia orgánica a lo largo del tiempo. El isótopo más abundante con diferencia es el 12C (98.9% frente a 1.1% de 13C).

La relación 13C/12C en plantas terrestres y microalgas es menor que en la atmósfera. Autor: F. Rodríguez.

En la incorporación de carbono en la fotosíntesis, plantas terrestres y microalgas (en concreto la enzima RUBISCO responsable de la fijación de carbono) discriminan a favor del isótopo ligero 12C respecto al 13C, por lo que su relación isotópica se empobrece en 13C.

Los combustibles fósiles (carbón, hidrocarburos, gas natural) que quemamos emitiendo CO2 a la atmósfera tienen su origen principalmente en microalgas y plantas terrestres, de ahí el descenso observado en el fraccionamiento isotópico del 13C.

Hasta aquí sólo hemos tratado de la serie moderna de CO2, pero ¿cómo estimamos los valores que había millones de años atrás?

Para estimar niveles de CO2 más allá de los testigos de hielo usamos paleobarómetros, principalmente fraccionamientos isotópicos a partir de microorganismos en sedimentos marinos.

El primero de dichos paleobarómetros emplea el fraccionamiento isotópico del 13C debido a la fotosíntesis, y analiza unos compuestos muy concretos: alquenonas, producidas por algunas especies de microalgas pertenecientes al grupo de las haptofitas.

Las alquenonas actuales proceden de Emiliania huxleyi y Gephyrocapsa oceanica, aunque antes del Plioceno (>5 Ma.) las responsables fueron otras especies (ya extintas, p.ej. del género Reticulofenestra).

El segundo paleobarómetro consiste en el fraccionamiento isotópico del 11B en las conchas de foraminíferos (zooplancton).

Ambos métodos muestran discrepancias dado que los valores de CO2 estimados proceden de organismos y procesos distintos.

Entre otros, un estudio reciente (Badger y col. 2019) indica que en los períodos con niveles más bajos de CO2, como los últimos 20 millones de años, el paleobarómetro de alquenonas tiene peor resolución debido a los mecanismos de concentración de carbono en las haptofitas.

El motivo es que dichos mecanismos de concentración aumentan el CO2 intracelular para contrarrestar la limitación en el medio y en consecuencia el fraccionamiento isotópico no recogería las oscilaciones del CO2 en el océano en dichas condiciones (y por extensión, en el aire).

Niveles de CO2 estimados mediante el paleobarómetro basado en alkenonas de haptofitas en una región ecuatorial del Atlántico (azul) y otras estimaciones anteriores (rojo). Fuente: Zhang y col. (2013).

Los niveles de CO2 mediante estos paleobarómetros señalan que los últimos 14 millones de años han sido la época con valores más bajos.

Sin embargo, la escalada actual del CO2 sigue un ritmo diez veces superior a los estimados en un período mayor, de hasta 66 millones de años.

Este brusco y rápido aumento del CO2 supone un reto adaptativo para los organismos que deben afrontar en un período breve de tiempo.

Un reto que será cada vez más difícil si las condiciones ambientales progresan en la dirección actual.

Editorial Destino (2019). Fuente: planetadelibros

En su último libro Juan Luis Arsuaga cita una metáfora preciosa sobre la evolución de las especies: los paisajes adaptativos, de Sewall Wright (1932).

En concreto me quedo con la visión que comenta de George Gaylord Simpson: el paisaje adaptativo como un mar picado que cambia muy lentamente y las especies con él.

Los picos del mar serían nichos ecológicos sobre los que se superponen las adaptaciones de las especies.

En este paisaje adaptativo cuando las especies no pueden seguir a los picos en movimiento, se quedan atrás.

«La escalera hacia el cielo de CO2» que levantamos desde hace más de un siglo está encrespando el paisaje adaptativo, haciendo que más y más especies se queden atrás…tal y como sugiere un trabajo recién publicado en Nature Communications: «Adaptive responses of animals to climate change are most likely insufficient» (Radchuck V. y col. 2019).

Un ejemplo de predicción catastrófica para un ecosistema marino se encuentra en el informe reciente del IPCC (2018) sobre la diferencia entre el impacto de un aumento de 1,5 ºC (el límite perseguido por el acuerdo climático de París de 2015) o de 2 ºC respecto a la época preindustrial. Pues bien, en él concluyen lo siguiente para los arrecifes de coral:

«Coral reefs, for example, are projected to decline by a further 70-90% at 1.5ºC (high confidence) with larger losses (>99%) at 2ºC (very high confidence)«.

Referencias

  • Alley R.B. Ice-core evidence of abrupt climate changes. PNAS 97:1331-1334 (2000).
  • Badger M.P.S. y col. Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels. Clim. Past. 15: 539–554 (2019).
  • IPCC. Global Warming of 1.5ºC. 26 pp. (2018). Disponible en www.ipcc.ch
  • Jouzel J. y col. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science 317:793-796 (2007).
  • Prentice I.C. y col. The carbon cycle and atmospheric carbon dioxide (2018). 56 pp. Disponible en www.ipcc.ch
  • Radchuk V. y col. Adaptive responses of animals to climate change are most likely insufficient. Nat. Comm. 10:3109 (2019).
  • Zeebe R.E. y col. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat. Geosc. 9:325-329 (2016).
  • Zhang Y.G. y col. A 40-million-year history of atmospheric CO2. Phil. Trans. R. Soc. A 371: 20130096 (2013).
  • Fuentes web: NOAA (Global warming), Scripps CO2 program, Earth Observatory NASA.
(Visited 264 times, 1 visits today)
0 comentarios

Dejar un comentario

¿Quieres unirte a la conversación?
Siéntete libre de contribuir

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *