Entradas

Escalera hacia el cielo…de CO2

Imagen de portada: Coral (Autora: Valeria Nascimento). Exposición: «The Ancient Oceans».

Editorial Xerais (2019). Fuente: tiempo.com

Para comprender y predecir la evolución del clima ha sido esencial conocer la influencia de factores como los cambios en la órbita del planeta, actividad solar, la circulación del océano y gases de efecto invernadero, entre otros.

El libro «Os tempos e o clima de Galicia» (2019) (entre cuyos autores figura Xavier Fonseca, creador de «Historias del tiempo» en La Voz de Galicia), dedica uno de sus capítulos al cambio climático.

En él adaptan una gráfica de Miller y col. (2014) con el forzamiento radiativo de varios factores (calculado desde 1850), señalando a los gases de efecto invernadero como responsables del aumento global de temperatura.

El forzamiento radiativo o climático es la diferencia entre la luz solar absorbida por La Tierra y la energía devuelta al espacio. El artículo original incluye más factores y otro gráfico con la parte antropogénica y natural del forzamiento radiativo que hablan por sí solas…

a) Forzamiento radiativo, b) la misma variable, dividida en origen natural y antropogénico. Fuente: Miller y col. (2014).

Entre las emisiones de gases con efecto invernadero destaca el CO2 procedente de la quema de combustibles fósiles desde finales del s.XIX (80% del total de emisiones entre 1970-2010), asociado estrechamente con el calentamiento global. Sobre esta asociación veremos más adelante una gráfica muy ilustrativa (para estamparla en una camiseta, vamos).

El clima del planeta ha sufrido cambios continuos y seguirá cambiando en el futuro, pero esta es la primera vez que lo hace empujado por la actividad humana.

La temperatura promedio del planeta ha subido alrededor de 1ºC en 2017 respecto a la época pre-industrial (1850-1900), con un rango de 0,8-1,2ºC según el IPCC.

Pero un dato aislado como éste ¿es mucho o poco? para saberlo necesitamos ponerlo en contexto a los ciclos climáticos de La Tierra en una serie de tiempo mayor. Y la tenemos...

En la actualidad disponemos de una serie moderna de 800.000 años con medidas directas y precisas de CO2, y estimaciones antiguas que se remontan a cientos de millones de años.

En la serie moderna hay dos grupos de medidas. Por una parte los datos de CO2 del observatorio Mauna Loa (Hawaii) iniciados por C. David Keeling en marzo de 1958.

En ella los niveles de CO2 han aumentado desde 315,71 a 413,92 ppm (junio 2019), una subida del 31% en 6 décadas, cada vez más rápida.

Por otra parte tenemos medidas directas a partir del hielo. Las capas de varios kilómetros de espesor que cubren regiones polares en Groenlandia y la Antártida retienen burbujas de aire que permiten conocer los niveles de CO2 (y estimar la temperatura mediante el fraccionamiento isótopico del agua).

Los testigos de hielo estudiados en Groenlandia se remontan a 123.000 años y los de la Antártida hasta 800.000 años. Las historias que narran son similares respecto al CO2, pero difieren en un aspecto fundamental: en Groenlandia se han registrado cambios bruscos de temperatura (estimados de hasta 8 ºC en 40 años!) ausentes en la Antártida (Alley, 2000).

Capa de hielo Laurentino. Fuente: serc.carleton.edu

Dichos cambios, únicos para el hemisferio norte, se han relacionado con alteraciones en el flujo de calor en el océano ligadas al aumento/retroceso de la capa de hielo Laurentino en Norteamérica entre 95.000-6000 años atrás.

La serie de CO2 más larga disponible en la actualidad es la del testigo de hielo «Dome C» en la Antártida (Jouzel y col. 2007) obtenido durante el proyecto europeo para la extracción de núcleos helados (EPICA).

El «Dome C» incluye 800.000 años, con ocho periodos glaciales y los correspondientes interglaciales, a lo largo de unos 3.200 metros de hielo.

En esta simulación de NOAA pueden observar la variación del CO2 combinando todos estos datos -desde 2017 hasta 800.000 años atrás- incluyendo testigos de hielo de Groenlandia y la Antártida.

CONCLUSIÓN: los niveles de CO2 nunca superaron los 300 ppm en los últimos 800.000 años, hasta comienzos del s.XX.

Y aquí tienen la oscilación temporal de CO2 y temperatura, calculada mediante los isótopos del agua (el fraccionamiento o pérdida del isótopo pesado deuterio (2H)), a partir de muestras del «Dome C». El final de las épocas glaciales se caracteriza por subidas de temperatura de 4-7 ºC a lo largo de unos 5.000 años. Las tasas actuales son unas 10 veces superiores.

La gráfica para estampar en una camiseta. Fuente: NOAA.

Bien. Sigamos atando cabos. Ahora les mostraré otro gráfico menos habitual en los medios de comunicación que da pie a la parte final de esta entrada donde hablaremos del fitoplancton.

Fuente: Scripps CO2 program.

Lo que vemos aquí es la desviación negativa en la relación isotópica del carbono 13 (13C), inversa a la evolución positiva del CO2 (aunque no tan perfecta en series temporales más largas).

EXPLICACIÓN: La quema de combustibles fósiles añade CO2 a la atmósfera con una señal isotópica característica: carece de 14C debido a su antigüedad y está empobrecido en 13C. La gráfica anterior es una de las principales evidencias del origen antropogénico del aumento de CO2.

El carbono posee tres isótopos (12C, 13C y 14C). Los isótopos 12C y 13C son estables y a diferencia del 14C se mantienen constantes en la materia orgánica a lo largo del tiempo. El isótopo más abundante con diferencia es el 12C (98.9% frente a 1.1% de 13C).

La relación 13C/12C en plantas terrestres y microalgas es menor que en la atmósfera. Autor: F. Rodríguez.

En la incorporación de carbono en la fotosíntesis, plantas terrestres y microalgas (en concreto la enzima RUBISCO responsable de la fijación de carbono) discriminan a favor del isótopo ligero 12C respecto al 13C, por lo que su relación isotópica se empobrece en 13C.

Los combustibles fósiles (carbón, hidrocarburos, gas natural) que quemamos emitiendo CO2 a la atmósfera tienen su origen principalmente en microalgas y plantas terrestres, de ahí el descenso observado en el fraccionamiento isotópico del 13C.

Hasta aquí sólo hemos tratado de la serie moderna de CO2, pero ¿cómo estimamos los valores que había millones de años atrás?

Para estimar niveles de CO2 más allá de los testigos de hielo usamos paleobarómetros, principalmente fraccionamientos isotópicos a partir de microorganismos en sedimentos marinos.

El primero de dichos paleobarómetros emplea el fraccionamiento isotópico del 13C debido a la fotosíntesis, y analiza unos compuestos muy concretos: alquenonas, producidas por algunas especies de microalgas pertenecientes al grupo de las haptofitas.

Las alquenonas actuales proceden de Emiliania huxleyi y Gephyrocapsa oceanica, aunque antes del Plioceno (>5 Ma.) las responsables fueron otras especies (ya extintas, p.ej. del género Reticulofenestra).

El segundo paleobarómetro consiste en el fraccionamiento isotópico del 11B en las conchas de foraminíferos (zooplancton).

Ambos métodos muestran discrepancias dado que los valores de CO2 estimados proceden de organismos y procesos distintos.

Entre otros, un estudio reciente (Badger y col. 2019) indica que en los períodos con niveles más bajos de CO2, como los últimos 20 millones de años, el paleobarómetro de alquenonas tiene peor resolución debido a los mecanismos de concentración de carbono en las haptofitas.

El motivo es que dichos mecanismos de concentración aumentan el CO2 intracelular para contrarrestar la limitación en el medio y en consecuencia el fraccionamiento isotópico no recogería las oscilaciones del CO2 en el océano en dichas condiciones (y por extensión, en el aire).

Niveles de CO2 estimados mediante el paleobarómetro basado en alkenonas de haptofitas en una región ecuatorial del Atlántico (azul) y otras estimaciones anteriores (rojo). Fuente: Zhang y col. (2013).

Los niveles de CO2 mediante estos paleobarómetros señalan que los últimos 14 millones de años han sido la época con valores más bajos.

Sin embargo, la escalada actual del CO2 sigue un ritmo diez veces superior a los estimados en un período mayor, de hasta 66 millones de años.

Este brusco y rápido aumento del CO2 supone un reto adaptativo para los organismos que deben afrontar en un período breve de tiempo.

Un reto que será cada vez más difícil si las condiciones ambientales progresan en la dirección actual.

Editorial Destino (2019). Fuente: planetadelibros

En su último libro Juan Luis Arsuaga cita una metáfora preciosa sobre la evolución de las especies: los paisajes adaptativos, de Sewall Wright (1932).

En concreto me quedo con la visión que comenta de George Gaylord Simpson: el paisaje adaptativo como un mar picado que cambia muy lentamente y las especies con él.

Los picos del mar serían nichos ecológicos sobre los que se superponen las adaptaciones de las especies.

En este paisaje adaptativo cuando las especies no pueden seguir a los picos en movimiento, se quedan atrás.

«La escalera hacia el cielo de CO2» que levantamos desde hace más de un siglo está encrespando el paisaje adaptativo, haciendo que más y más especies se queden atrás…tal y como sugiere un trabajo recién publicado en Nature Communications: «Adaptive responses of animals to climate change are most likely insufficient» (Radchuck V. y col. 2019).

Un ejemplo de predicción catastrófica para un ecosistema marino se encuentra en el informe reciente del IPCC (2018) sobre la diferencia entre el impacto de un aumento de 1,5 ºC (el límite perseguido por el acuerdo climático de París de 2015) o de 2 ºC respecto a la época preindustrial. Pues bien, en él concluyen lo siguiente para los arrecifes de coral:

«Coral reefs, for example, are projected to decline by a further 70-90% at 1.5ºC (high confidence) with larger losses (>99%) at 2ºC (very high confidence)«.

Referencias

  • Alley R.B. Ice-core evidence of abrupt climate changes. PNAS 97:1331-1334 (2000).
  • Badger M.P.S. y col. Insensitivity of alkenone carbon isotopes to atmospheric CO2 at low to moderate CO2 levels. Clim. Past. 15: 539–554 (2019).
  • IPCC. Global Warming of 1.5ºC. 26 pp. (2018). Disponible en www.ipcc.ch
  • Jouzel J. y col. Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science 317:793-796 (2007).
  • Prentice I.C. y col. The carbon cycle and atmospheric carbon dioxide (2018). 56 pp. Disponible en www.ipcc.ch
  • Radchuk V. y col. Adaptive responses of animals to climate change are most likely insufficient. Nat. Comm. 10:3109 (2019).
  • Zeebe R.E. y col. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat. Geosc. 9:325-329 (2016).
  • Zhang Y.G. y col. A 40-million-year history of atmospheric CO2. Phil. Trans. R. Soc. A 371: 20130096 (2013).
  • Fuentes web: NOAA (Global warming), Scripps CO2 program, Earth Observatory NASA.

Un mundo frío y seco

Imagen de portada: fiordo de Inglefield Bredning (Groenlandia, 13 junio 2019). Autor: @SteffenMalskaer

Dicen que una imagen vale más que mil palabras, pero si la acompañamos de un titular sensacionalista corremos el riesgo de desinformar, o de incluso perder la credibilidad.

El escepticismo es el mejor punto de partida. Yo diría más: es una actitud imprescindible para no caer en bulos y tener una opinión informada y actualizada sobre cualquier tema. Nos la podrán colar, pero pongamos un filtro para reducir las posibilidades.

La imagen de los huskies tirando de un trineo sobre una capa de agua en Groenlandia es real e impactante. Pero su propio autor, el científico danés Steffen M. Olsen, debe seguir todavía abrumado por la onda expansiva y las interpretaciones de toda clase que ha generado.

Pongo varios ejemplos: «El drama del deshielo de Groenlandia en una sola foto» (El País, 19-VI-2019), «No son perros caminando sobre el agua, es Groenlandia derritiéndose» (La Voz de Galicia, 20-VI-2019), o «La foto viral que muestra la monstruosa magnitud del deshielo que sufre Groenlandia» (Periodista Digital, 18-VI-2019).

Vaya por delante que nadie con acceso al conocimiento científico actual puede negar la evidencia del cambio global y de su origen antropogénico a través de la quema de combustibles fósiles responsable del aumento de CO2 y de la temperatura media del planeta. Nadie.

Pero no deben creerlo porque yo se lo diga, como el gurú de una secta, sino porque detrás de esa frase la comunidad científica ha acumulado datos objetivos y contrastables que así lo demuestran.

El acceso a esos datos no depende de que le inviten a uno al panel de expertos del IPCC, mal iríamos, sino de que la información se transmita a todos los públicos desde libros, prensa, medios audiovisuales, charlas a pie de calle y centros educativos.

En la información de ciencia debemos aplicar el mismo principio de trazabilidad que con la comida. Fiable es todo aquello que podamos trazar al origen, en este caso a trabajos de instituciones de investigación y académicas (organismos públicos de investigación y universidades), publicados en revistas internacionales revisadas por pares. Claro que hay excepciones, una ristra de ellas, pero este filtro es imprescindible.

Si leen una noticia de ciencia y no hay referencias al estudio original, desconfíen. Busquen medios que incluyan enlaces a las fuentes.

Aquí entra la importancia del rigor y el entretenimiento en la comunicación y divulgación científica: elaborar un mensaje para todos los públicos sin caer en ingenuidades o complejidades que a nadie interesan. Suena difícil y lo es.

Yo lo veo como cruzar un río sobre unas piedras. El artículo científico original es un suelo firme y ancho que construimos los investigadores pero yermo y aburrido para el público en general.

El truco está en romper ese suelo y descubrir el río de evidencias que se oculta bajo él, dejando sólo una fila de piedras para cruzar a la otra orilla. Esas piedras simbolizan la idea esencial y el río la información necesaria para entender, razonar y defender nuestra postura ante los demás.

Quienes nos movemos entre la investigación y la divulgación corremos el riesgo constante de no saber cómo romper el suelo o de hacerlo con tanto ahínco que nadie quiera (ni pueda) cruzar el río!

Aquí van otros ejemplos de cómo se ha titulado la imagen: «La foto viral del deshielo en Groenlandia oculta una gran paradoja científica» (Traveler, 24-VI-2019), «Soaring Temperatures Speed Up Spring Thaw on Greenland’s Ice Sheet» (NY Times, 17-VI-2019), o «Photograph lays bare reality of melting Greenland sea ice» (The Guardian, 18-VI-2019). Los textos de estas noticias son rigurosos y les invito a leerlos.

Porcentaje de la superficie fundida del hielo de Groenlandia en lo que llevamos de 2019 frente al promedio 1981-2010. Fuente: National Snow & Ice Data Center

La imagen de Groenlandia ilustra un fenómeno habitual en verano, acelerado e intensificado en las últimas décadas por el cambio global. Pero por sí sola no es más que un símbolo. Así lo explicaba el propio autor: «the image was more symbolic than scientific to many.” (CTV News, 18-VI-2019).

Dicho de otro modo, es un magnífico ejemplo de cómo romper el suelo, pero dejemos algunas piedras para poder cruzar el río: datos y contexto.

En la próxima entrada hablaremos del CO2 y de la temperatura en nuestro planeta, y de restos fósiles del fitoplancton para estimar los niveles de CO2 cuando los dinosaurios campaban a sus anchas. Gracias a ello sabemos que nuestro mundo de hoy es frío y seco desde la perspectiva de un dinosaurio, claro!