Cariño he encogido a las diatomeas

Las diatomeas necesitan sexo. La razón es simple: poseen cubiertas de sílice de distinto tamaño que encajan como una placa de Petri. Al dividirse las células hijas heredan una de ellas y fabrican la más pequeña. Como resultado van encogiéndose hasta un límite en el que deben reproducirse sexualmente y recuperar su talla máxima, o perecer.

La reproducción sexual supone además recombinación genética. Gracias a ella las células hijas no son clones de sus progenitores, sino nuevos genotipos que aumentan la variabilidad de la población y con ello su capacidad de evolucionar y adaptarse a lo que venga.

Diatomea central (Coscinodiscus granii). Autor: F. Rodríguez

Existen dos grupos principales de diatomeas: las de simetría radial (centrales) y bilateral (pennales).

Las centrales, evolutivamente más primitivas, son homotálicas. Es decir, los cultivos clonales (a partir de una célula) fabrican dos tipos de gametos y pueden reproducirse sexualmente. Unos individuos producen gametos inmóviles (huevos), mientras que otros producen gametos móviles flagelados. Así que son oógamas, como nosotros.

Diatomea pennal (Diploneis sp.). Autor: F. Rodríguez

En cambio, las pennales son generalmente heterotálicas: cada cultivo clonal producirá un único tipo de gametos y para reproducirse sexualmente necesitará otro cultivo que fabrique gametos de signo opuesto (se les designa como + o ). Suelen ser isógamas: gametos idénticos como gotas de agua.

Uno de los géneros de diatomeas pennales más estudiado es Pseudo-nitzschia porque incluye varias especies productoras de ácido domoico, relacionadas con la intoxicación amnésica por consumo de marisco (ASP) u otros organismos marinos contaminados. Usaremos este género para hablar de la reproducción sexual en diatomeas.

¿Por qué aumentan de tamaño las diatomeas gracias al sexo?

Pues verán, durante la reproducción sexual se pierden las frústulas de sílice y la nueva célula fruto de la fusión de los gametos se alarga en una especie de metamorfosis cual capullo gracias a una delicada vaina que la protege llamada perizonium.

Fases de la reproducción sexual de P. multistriata, con atención a los cloroplastos (en azul y rosa). A) células apareadas, B-D) duplicación de los cloroplastos y formación de gametos, E-F) apertura de las frústulas y conjugación de los gametos, G-H) elongación de la auxospora y salida del zigoto a través del perizonium. Fuente: Fig. 4 de Scalco y col (2015).

En el ejemplo de Pseudo-nitzschia multistriata podemos ver como se duplican los cloroplastos en las células apareadas (azul/+ vs rosa/-) y se forman los gametos que luego se conjugan en un zigoto que madurará como auxospora. Esta rompe su pared orgánica y entre los extremos se extiende el perizonium del cual emerge una célula nueva totalmente formada.

Se trata de un individuo diploide con 4 cloroplastos que luego se dividirá originando células vegetativas (también diploides) con 2 cloroplastos. La extensión de la auxospora se completa en unas 20 horas en P. multistriata.

La descripción de fases sexuales en Pseudo-nitzschia data de 1991 y la realizó Greta Fryxell en cultivos aislados en la Antártida de P. subcurvata.

Igual que a mí les sorprenderá leer que no se descubrieron en muestras naturales hasta el año 2006, en un evento masivo de reproducción sexual de dos especies: P. cf. delicatissima y P. cf. calliantha en el Golfo de Nápoles (Sarno y col. 2010).

La explicación es que su duración es breve (no más de 15 días en el estudio de Sarno y col.) siendo fácil que pase inadvertida. Además involucra a un porcentaje pequeño de la población, aunque en el evento del Golfo de Nápoles alcanzó al 14% en P. cf. calliantha lo cual es excepcional en relación a otros estudios. Casualmente, pocos meses después se publicó un trabajo similar (Holtermann y col. 2010) sobre otro evento masivo de reproducción sexual en 2006 en P. australis y P. pungens que duró unas 3 semanas en la costa de Washington (EEUU).

Tiene mucho sentido que estos eventos sean masivos y breves. Aparearse y encontrar gametos del sexo opuesto es improbable si no existe un mínimo de sincronización en el tiempo y en el espacio.

Fuente: Slideshare. Autora: Rosa Ana Vespa Payno.

Esta sincronización en los desoves es común en muchos organismos marinos como p.ej. corales, holoturias o el gusano Palolo (Eunice viridis), un poliqueto que habita en aguas someras tropicales del Pacífico, como el archipiélago de Samoa.

Entre octubre y noviembre los Palolos se desprenden del epitoque, la parte terminal de su cuerpo cargada de huevos o esperma, que remonta de noche hacia la superficie desovando al amanecer.

Se trata de un evento masivo anual que dura unos pocos días coincidiendo con luna menguante, y en el que parecen intervenir además de ciclos lunares, una combinación de ritmos anuales, circadianos y mareales.

Samoanos capturando gusanos Palolo en los arrecifes durante la noche, cerca de Apia (Samoa occidental). Autor: Peter Menzel

Por curiosidad les diré que los epitoques son un alimento muy apreciado y los nativos los pescan con redes en esas noches de frenesí nupcial. Se comen crudos o fritos con mantequilla, cebolla, pimientos, huevo, o untados en tostadas. Hummm…!!

Desovar en la superficie forma parte de la estrategia para aumentar el éxito reproductivo.

Pues bien, al igual que los Palolos, en el caso de Pseudo-nitzschia el evento masivo de reproducción sexual también se observa en superficie: en el caso del Golfo de Nápoles (Sarno y col. 2010) entre 0-20 metros para P. cf. delicatissima y en plena superficie en P. cf. calliantha, igual que en Washington donde Holtermann y col. observaron las fases sexuales adheridas a colonias de otras diatomeas de la zona de rompiente.

¿Qué señales inducen el sexo en las diatomeas?  

La luna que pone locos a los Palolos no afecta que nosotros sepamos a las diatomeas. En principio es necesario sobrepasar un umbral mínimo de tamaño que en el caso de Pseudo-nitzschia suele estar entre 40-60% de la talla máxima. Además de la reducción gradual debida a las divisiones asexuales, también se han descrito disminuciones bruscas de tamaño en P. pungens que podrían servir para acortar el ciclo de vida y adelantar la fase sexual.

Una vez que las células han encogido suficiente, la inducción de la sexualidad en diatomeas centrales parece obedecer a cuestiones externas (temperatura, luz, fotoperiodo, etc). En el caso de las pennales juegan un papel más importante factores de tipo endógeno. En particular en Pseudo-nitzschia parece existir un mecanismo dependiente de la concentración celular, lo cual sugiere que intervienen señales químicas producidas y percibidas por el conjunto de la población, que recuerdan al quorum sensing de las bacterias.

Cultivos de P. multistriata de signo opuesto separados por una membrana, y botellas de control. Fuente: Fig. 4 adaptada de Basu y col (2017).

Estas señales de alerta podrían ser compartidas por distintas especies explicando así los desoves masivos simultáneos en el medio natural.

Aún se desconoce la naturaleza de los compuestos, pero al poner en contacto cultivos de Pseudo-nitzschia de signo opuesto separados por una membrana que permita el intercambio de medio –no de células-, estos detienen su crecimiento vegetativo y sincronizan su ciclo celular en la fase G1 donde las células suelen ser más receptivas a las feromonas sexuales.

Mientras, los mismos cultivos por separado continúan su crecimiento normal, como si nada.

Las evidencias sobre el sexo en muestras naturales son escasas, pero una vez más, en el Golfo de Nápoles, se descubrió un curioso ciclo bianual gracias al estudio de una serie temporal de 11 años de Pseudo-nitzschia multistriata (D’Alelio y col. 2010), la única especie tóxica local de este género.

Comparación entre la media natural de tamaño en P. multistriata (círculos negros) y la simulación matemática (trazos de color). La línea discontinua horizontal señala el umbral de la gametogénesis. La barra inferior representa fases de crecimiento: gris (no proliferación), negra (bloom exponencial) y blanca (estacionaria). Fuente: Fig. 3 adaptada de D’Alelio y col. (2010).

En la serie temporal existían patrones de abundancia y tamaño celular que se reproducían de forma periódica apuntando a una regularidad pasmosa en la sucesión de las fases asexuales y sexuales.

Empleando un modelo matemático consiguieron representar el desarrollo y la sucesión de distintas cohortes de P. multistriata para reconstruir los cambios de tamaño observados.

Según dicha simulación las fases sexuales tendrían lugar cada 2 años en esta localidad y para esta especie.

Es más, el modelo también predice que si la reproducción sexual no ocurriese al menos cada 4 años P. multistriata se extinguiría localmente. La conclusión es que las fases sexuales están sujetas a un estricto control y tienen un impacto fundamental en la dinámica de las poblaciones, cuya evolución no podemos explicar usando sólo factores medioambientales.

Seminavis robusta. Autor: M. Loir. Fuente: diatom.loir

Y el siguiente paso será profundizar en las bases moleculares del sexo.

En diatomeas pennales se sabe que está determinado genéticamente aunque no por cromosomas sexuales como en humanos sino por regiones/locus concretas (MAT: Mating Type) identificadas por primera vez en la especie bentónica Seminavis robusta (Vanstechelman y col. 2013). ¿Y en diatomeas centrales? pues no hay datos todavía.

Volviendo al género Pseudo-nitzschia se acaba justo de publicar el genoma de P. multistriata (Basu y col. 2017) y con él los primeros resultados sobre genes inducidos sexualmente.

En su mayoría son exclusivos de diatomeas e incluso del género Pseudo-nitzschia como es lógico esperar de un mecanismo biológico tan complejo y específico. Al fin y al cabo ¿qué diatomea en su sano juicio evolutivo dejaría al azar reconocer al sexo opuesto y evitar cruces con otras especies?

Referencias:

-Basu S. y col. Finding a partner in the ocean: molecular and evolutionary bases of the response to sexual cues in a planktonic diatom. New Phytol. 215:140–156. doi: 10.1111/nph.14557 (2017)
-D’Alelio D. y col. The time for sex: A biennial life cycle in a marine planktonic diatom. Limnol. Oceanogr. 55(1): 106–114. (2010)
-Holtermann K.E. y col. Mass sexual reproduction in the toxigenic diatoms Pseudo-nitzschia australis and P. pungens (Bacillariophyceae) on the Washington coast. – J. Phycol. 46: 41–52. (2010)
-Montresor M. y col. Sex in marine planktonic diatoms: insights and challenges. Perspectives in Phycology, 3 Issue 2: 61–75 (2016)
-Orsini L. y col. Toxic Pseudo-nitzschia multistriata (Bacillariophyceae) from the Gulf of Naples: morphology, toxin analysis and phylogenetic relationships with other Pseudo-nitzschia species. Eur. J. Phycol., 37:2, 247-257 (2002)
-Sarno D. y col. A massive and simultaneous sex event of two Pseudo-nitzschia species. Deep-Sea Res Pt II 57: 248–255 (2010)
-Scalco E. y col. The sexual phase of the diatom Pseudo-nitzschia multistriata: cytological and time-lapse cinematography characterization. Protoplasma, DOI 10.1007/s00709-015-0891-5 (2015)
-Vanstechelman I. y col. Linkage mapping identifies the sex determining region as a single locus in the pennate diatom Seminavis robusta. PLoS ONE 8(3): e60132. (2013)

 

(Visited 231 times, 1 visits today)
0 comentarios

Dejar un comentario

¿Quieres unirte a la conversación?
Siéntete libre de contribuir

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *