Entradas

Las focas de Morrell

Imagen de portada: focas del Cabo. Fuente: thesardinerun

20 de septiembre de 1828. El capitán Benjamin Morrell, conocido en su época como «el mayor embustero del Pacífico«, recorre con su goleta «Antarctic» las costas de Namibia. Y en su rumbo hacia el norte se detiene en isla Posesión, a unos tres kilómetros del continente.

Vista aérea del sur de isla Posesión. Autor: Brian J. McMorrow. Fuente: pbase.com

La reputación de Morrell era dudosa porque solía mezclar en sus escritos experiencias propias y ajenas «hasta el punto de no poder distinguir a quien pertenecían«.

Pero lo que descubrió en aquella isla quizás no se lo inventó del todo y según Timothy Wyatt (1980) bien pudo deberse a una proliferación de microalgas tóxicas.

Conozco a Tim Wyatt desde 2008 cuando me incorporé al IEO de Vigo. Hemos coincidido pocas veces, en conferencias internacionales y por otros motivos cerca de Vigo.

Foto de grupo proyecto LIFEHAB (2001). Tim Wyatt está en la segunda fila a la derecha, con camiseta blanca. Fuente: ICM-CSIC.

A lo largo de su larga carrera (está jubilado pero sigue publicando) Tim ha abordado diversos temas, incluyendo la ecología y dinámica de poblaciones de microalgas nocivas. También fue el editor durante dos décadas de Harmful Algal News (ISSHA).

El año pasado me regaló algo muy valioso: dos artículos suyos de 1979 y 1980. Y lo hizo después de asistir a una de las charlas que dí sobre historias de algas y el mar relacionadas con Verne (Un mar de Verne). Al leerlos entendí por qué.

El primero de dichos artículos es «Global Patterns of Discolored Water and Related Events in the Nineteenth and Twentieth Centuries» y el segundo es el que he escogido para esta entrada: «Morrells’s seals«.

Posesión es la principal de un grupo de islas e islotes conocido como Islas Pingüino dispersas a lo largo de la costa de Namibia, una región desértica con aguas muy productivas por el afloramiento de Benguela y ricas en recursos pesqueros como ustedes sabrán.

Morrell, a su llegada a isla Posesión en 1828, dice lo siguiente:

«En este lugar, en los meses de agosto, septiembre y octubre pueden recogerse cantidades inmensas de huevos de pingüinos; y en su costa pueden capturarse abundantes peces de excelente calidad. En la superficie de esta isla vi los efectos de una plaga o peste, que había afectado a los habitantes anfibios del océano […] toda la isla estaba literalmente cubierta por carcasas de lobos marinos, con la piel sobre ellas. Parecía que habían muerto hacía cinco años y era evidente que había sucedido al mismo tiempo. Yo diría, a juzgar por la inmensa cantidad de carcasas y huesos, que no había menos de medio millón, y que habían sido víctimas de una misteriosa plaga o enfermedad.»

Trad. de Morrell B. (1832).
Arctocephalus pusillus en «Cape Cross», costa de los esqueletos (Namibia). Autor: Grobler du Preez. Fuente: 123rf.com

Las víctimas en cuestión eran Arctocephalus pusillus, conocidas como focas del Cabo, aunque para ser precisos se trata de lobos marinos. Focas y lobos marinos son mamíferos pinnípedos con diferencias físicas y ecológicas que no explicaré aquí.

Nos basta con saber que dicha especie vive en la región sur de África y Australia. Aunque su colonia en isla Posesión se extinguió.

El relato de Morrell continúa y 17 millas al norte llegan a Bahía Angra Pequena. En ella describe otra escena similar:

«Dos millas al noroeste […] se encuentran dos islas pequeñas […] antes acogían a un número inmenso de lobos marinos, pero fueron aniquilados sin duda por la misma plaga que los devastó en isla Posesión, ya que sus restos mostraban el mismo aspecto en ambos casos.»

Trad. de Morrell B. (1832).

Morrell recorrió la costa de Namibia durante nueve meses y en aquel viaje descubrió colonias sanas de lobos marinos en otras islas situadas entre Posesión y Angra Pequena. Al año siguiente regresó a la misma zona. Un tornado de grandes dimensiones pasó a unos 200 metros del barco y Morrell sugirió que este fenómeno pudo sofocar y matar a los lobos marinos.

Peces muertos en la costa suroeste africana tras una proliferación de dinoflagelados (Tripos furca y Prorocentrum micans). Fuente: Kudela y col. (2005).

La realidad es que en la costa suroeste de África se registran habitualmente mortalidades masivas de fauna marina.

Tal como tratamos en «La costa de las langostas asfixiadas», dicho fenómeno puede deberse a la hipoxia estacional por la descomposición de las proliferaciones de fitoplancton (incluyendo mareas rojas, nocivas o no), por la respiración de la comunidad planctónica y/o erupciones tóxicas de sulfuro de hidrógeno.

Uno de dichos episodios fue documentado en 1880 en Bahía Ballena (Walvis Bay), Namibia. En aquella ocasión llegaron a la orilla miles de peces muertos durante varios días (Gilchrist, 1914). El agua de la bahía estaba teñida de rojo con un aroma maloliente flotando en el aire. Al mismo tiempo, todo lo que era blanco se ennegreció, tanto en el buque de los testigos de aquel evento como en las casas de la bahía.

Esta descripción coincide con una marea roja y la descomposición masiva de la comunidad planctónica responsable del apestoso sulfuro de hidrógeno que oscurece la pintura y objetos como anclas, cadenas, utensilios de latón, etc. Se trata del mismo fenómeno conocido como «El pintor del Callao» en otra zona de afloramiento, la del Perú.

Pero Morrell no menciona nada de esto en su relato. En su caso, la muerte y extinción de las colonias de lobos marinos pudo suceder por una intoxicación alimentaria que Tim Wyatt sugirió debida a una proliferación de fitoplancton tóxico -o por hambruna después de una mortalidad masiva de peces-.

Benjamin Morrell (1795-1839). Grabado de Gimber & Dick. Fuente: Wikimedia commons.

Ambas hipótesis tienen varios problemas como él mismo reconoce. Para que la mortandad de peces tuviese un efecto tan devastador haría falta una catástrofe (nunca vista) a lo largo del área que suelen abarcar en sus desplazamientos los lobos marinos (hasta 160 km).

El avistamiento por Morrell de colonias vivas de lobos marinos entre isla Posesión y Angra Pequena descartaría aparentemente este supuesto.

Sin embargo, sí puede ser un factor de mortalidad masiva. En 1994 se calcula que 100.000 ejemplares de lobos marinos de esta misma especie (A. pusillus) perecieron debido a la intrusión de masas de aguas anóxicas en la plataforma costera y la escasez de pescado posterior.

La hipótesis de una intoxicación alimentaria por biotoxinas marinas sí explicaría las muertes en colonias aisladas de lobos marinos, dada la distribución espacial de las proliferaciones de fitoplancton, que suelen concentrarse en manchas circunscritas a regiones concretas (bahías, estuarios, zonas de convergencia o estabilidad).

No obstante, un panorama tan desolador como el que describe Morrell es inaudito para una intoxicación asociada al fitoplancton ¿medio millón de lobos marinos? ¿con daños similares en islas cercanas? duro de creer.

Los cálculos de medio millón de cadáveres en isla Posesión puede que fuesen exagerados -aunque no imposibles dada la superficie de la isla y la afirmación de Morrell de que la cubrían en su totalidad-. Lo que resulta difícil de imaginar es que murieran por esta única causa y más aún en dos localizaciones distintas.

Para situarles en contexto pondré algunos ejemplos de las escalas de daños sobre mamíferos marinos asociadas al fitoplancton tóxico.

Cadáver de beluga con síntomas externos de los daños por toxinas paralizantes, producidas por dinoflagelados del género Alexandrium, en Canadá. Fuente: Starr y col. (2017).

En agosto de 2008 un bloom de dinoflagelados tóxicos del género Alexandrium en el este de Canadá (Golfo de San Lorenzo) provocó una mortalidad masiva de peces, aves y mamíferos, incluyendo 10 belugas y 85 focas, por toxinas paralizantes (Starr y col. 2017).

En 1998, el Marine Mammal Center registró el varamiento de 400 leones marinos en California afectados por toxinas amnésicas debidas al consumo de peces contaminados por proliferaciones de diatomeas tóxicas (Pseudo-nitzschia australis). Perecieron en su práctica totalidad.

En 2015 en Chile, se registró la muerte de 343 ballenas sei, relacionada a posteriori también con toxinas paralizantes de dinoflagelados. Y en 2018, se calcula que 191 manatíes y centenares de delfines perecieron debido a la proliferación del dinoflagelado tóxico Karenia brevis en el Golfo de Florida (The Guardian, 19-XI-2018 y The Florida Red Tide).

Así pues, las mortalidades por biotoxinas en mamíferos marinos suelen afectar a una escala cuantitativa menor –aunque no podemos saber con certeza los ejemplares que perecen en el mar-.

Prorocentrum micans. Autor: Emilio Soler.

Volviendo al suroeste de África, la mayoría de proliferaciones y mareas rojas suelen deberse a dinoflagelados no tóxicos (p.ej. Tripos furca, Prorocentrum micans) y al ciliado fotosintético Mesodinium rubrum, entre otros.

Aún así, dichas proliferaciones pueden ser muy dañinas para la fauna marina (invertebrados y peces), por la hipoxia que llegan a ocasionar en la columna de agua.

Los blooms de dinoflagelados tóxicos (Gonyaulax, Karenia, Alexandrium, etc) también han sido responsables en dicha región de mortalidades masivas de peces, invertebrados (p.ej. orejas de mar), ballenas, aves marinas, así como varios registros en babuinos (sí, babuinos alimentándose de marisco contaminado!!), además de humanos en múltiples ocasiones desde el s.XIX hasta nuestros días (Pitcher y col. 2000).

Pero nunca se han observado mortalidades masivas de lobos marinos en la región que visitó Morrell. De ser cierto, su relato constituye un hecho histórico y singular. La posibilidad que apunta Tim Wyatt es que se hubiesen alimentado de peces e invertebrados contaminados por biotoxinas marinas paralizantes y que sus efectos neurotóxicos se manifestasen horas después, ocasionándoles la muerte no en el mar sino de regreso a la isla. Es posible, aunque pudieron ser varios factores los que condujeron a aquella catástrofe.

Además de las biotoxinas marinas y la escasez de alimento, existen otras causas de mortalidades masivas en pinnípedos como las infecciones víricas.

Phoca vitulina. Autor: Marcel Burkhard. Fuente: Wikimedia commons.

En el hemisferio norte se han registrado varias epidemias de morbillivirus entre focas comunes (Phoca vitulina), como la que mató a 17.000 ejemplares en el mar del Norte y Báltico en 1988, y en años posteriores con menor virulencia.

Se cree que dichos virus se transmitieron desde perros domésticos o carnívoros terrestres. Nunca se ha manifestado un fenómeno similar en lobos marinos africanos, pero el riesgo existe.

Terminaré con una nota feliz. En época de Morrell, y a lo largo de todo el s.XIX, los lobos marinos africanos sufrieron una persecución feroz por el comercio de sus pieles, diezmando sus poblaciones hasta llevarlas prácticamente a la extinción. Pero en 1893 se promulgó una ley para protegerlas y evitar el desastre.

Sus poblaciones se recuperaron a lo largo del s.XX, permaneciendo estables desde los años 90′. Hoy en día su caza está prohibida en Sudáfrica, no así en Namibia.

Arctocephalus pusillus pusillus. Autor: F. Lampen. Fuente: The red list of mammals of South Africa, Lesotho and Swaziland.

En la actualidad su número aproximado es de 1,7 millones de individuos, y sus colonias se han extendido hacia el norte de Namibia y Angola.

Agradecimientos: A Tim Wyatt por darme a conocer esta historia a través de su artículo y por haber asistido a aquella charla en Gondomar.

Referencias:

  • Gerber L. & Hilborn R. Catastrophic events and recovery from low densities in marine otariids: implications for risk of extinction. Mammal Rev. 31:131-150 (2001).
  • Gilchrist J.D.F. An enquiry into fluctuations in fish supply on the South African coast. Mar. Biol. Rep., Cape Tn, No. 2:8-35 (1914).
  • Kudela R. y col. Harmful algal blooms in upwelling ecosystems. Oceanography 18:184-197 (2005).
  • Morrel B. A narrative of four voyages (to the South Sea, North and South Pacific Ocean, Chinese Sea, Ethiopic and southern Atlantic Ocean, Indian and Antarctic Ocean) from the year 1822-1831. Harper, New York, 492 pp. Disponible en ULS Digital Collection.
  • Pitcher G.C. & Calder D. Harmful algal blooms of the southern Benguela Current: a review and appraisal of monitoring from 1989 to 1997. S. Afr. J. Mar. Sci. 22:255-271 (2000).
  • The Red List of Mammals of South Africa, Lesotho and Swaziland.
  • Starr M. y col. Multispecies mass mortality of marine fauna linked to a toxic dinoflagellate bloom. Plos One 12:e0176299. https://doi.org/10.1371/journal.pone.0176299
  • Wyatt T. Morrells’ seals. J. Cons. int. Explor. Mer. 39:1-6 (1980).

La costa de las langostas asfixiadas

comp

Principales zonas de afloramiento en el mundo. Fuente: Dynamics of Marine Ecosystems (Mann & Lazier, 1991).

El peligro de ahogarnos en el mar lo tenemos muy presente por mucho que Guillaume Néry y Alice Modolo se comporten como peces bajo el agua.

Lo que sí resulta extraño es que el mar pueda asfixiar a un pez, una langosta o al fitoplancton. Sin embargo esto es lo que sucede en zonas costeras con alta productividad como el suroeste de África.

Existen 5 grandes áreas de afloramiento: dos en el Pacífico (Norteamérica y Suramérica) y tres en el continente africano.

El afloramiento es una fertilización natural

Las corrientes costeras consecuencia de los vientos dominantes y la fuerza de Coriolis (debida a la rotación de la Tierra) desplazan las aguas superficiales hacia el océano, ocupando su lugar aguas profundas frías y ricas en nutrientes. Maná para el fitoplancton y todo el ecosistema marino.

Las grandes áreas de afloramiento originan desiertos costeros porque el enfriamiento persistente del mar disminuye la evaporación y humedad ambiental. Tales son los casos de Atacama (Perú/Chile) y Namib/Kalahari (Namibia/Sudáfrica), asociados estos últimos a la corriente de Benguela.

benguela-yyy

La corriente de Benguela representada por MGSVA (Mariano Global Surface Velocity Analysis). Fuente: oceancurrents

Dicha corriente forma parte del giro del Atlántico Sur y discurre hacia el norte a lo largo de unos 200 km. El afloramiento de Benguela sustenta una gran pesquería en Angola, Namibia y Sudáfrica, básicamente jurel, merluza, anchoa y sardina.

Con algunos detalles…

Las capturas se desplomaron a lo largo de los últimos 50 años por culpa de la sobreexplotación, especialmente en la zona norte (Namibia): en los 70′ colapsó la pesquería de sardina y en los 90′ la de anchoa.

Es probable también que cambios ambientales como el aumento de temperatura en el mar (al norte y sur del afloramiento), hayan contribuido a la reducción y desplazamiento de las poblaciones de sardinas y anchoas.

Además de los peces, en Namibia y sobre todo en Sudáfrica, se explotan otros recursos como la langosta roja (Jasus lalandi), que se captura hasta los 100 metros de profundidad.

jasus-lalandi

Langosta roja de Namibia. Fuente: ECPlaza

La langosta roja es muy vulnerable por su lento crecimiento y las mortandades masivas debidas a episodios de anoxia en el mar. Este fenómeno, habitual en la región de la bahía de Santa Elena, es el «reverso tenebroso» de su enorme productividad.

En dicha bahía se combinan una hipoxia estacional con episodios de anoxia por la influencia del afloramiento costero y el control que éste ejerce sobre la productividad y la aparición de mareas rojas.

La temporada de afloramiento (de septiembre a mayo), impulsa hacia la costa aguas profundas con muchos nutrientes que favorecen la proliferación del fitoplancton. Las concentraciones de clorofila a llegan a superar los 500 mg/m³ !!

El problema es que las aguas profundas de la plataforma tienen poquito oxígeno. La culpa la tiene la descomposición de materia orgánica al declinar y sedimentar las poblaciones de fitoplancton no consumidas por los predadores. Todo ello aderezado con factores físicos que reducen el intercambio de oxígeno entre las aguas profundas y superficiales (estratificación en verano + una extensa plataforma).

A medida que avanza la temporada de afloramiento se reducen los niveles de oxígeno desde el fondo y hacia la superficie, estrechando la zona habitable para organismos como la langosta roja. Así que las pobres langostas se ven obligadas a correr hacia aguas someras más ventiladas…

imagen3

Esquema de la anoxia en Sta. Elena. El afloramiento extiende hacia la costa las aguas hipóxicas pero es la anoxia debida a la respiración y el colapso de las mareas rojas durante épocas de hundimiento la responsable de las mortandades masivas de fauna marina. Adaptado de Pitcher & Probyn (2011).

A finales del verano y comienzos del otoño, en la transición del afloramiento al hundimiento, son habituales las mareas rojas (principalmente dinoflagelados no tóxicos del género Tripos), que aunque pueden proliferar con el afloramiento terminan acumulándose en la costa al cambiar las condiciones oceanográficas.

Durante el día las aguas se sobresaturan de oxígeno debido a la ingente actividad fotosintética. En cambio, de noche la respiración de la comunidad es tan elevada que ni siquiera la difusión desde la atmósfera compensa el gasto de oxígeno.

Además, dicha difusión es menor durante esta época con vientos flojos y mayor estabilidad en el mar. Todo ello provoca episodios nocturnos de anoxia y muerte celular a la que también contribuye la escasez de nutrientes. Estos factores, entre otros, ocasionan el declive de las mareas rojas, su descomposición dispara aún más el consumo de oxígeno y se intensifican los episodios de anoxia.

La tormenta perfecta !!

furca

Tripos furca. Autor: F. Rodríguez

Elands Bay es una pequeña localidad en el norte de la bahía de Sta. Elena conocida por sus pinturas rupestres. En ella ocurrió el mayor varamiento de langostas en abril de 1997, tras concentrarse miles de ejemplares en la rompiente del mar huyendo de la anoxia, después de un bloom de Tripos furca.

Las pérdidas totales fueron de 2.000 Tm, un desastre ecológico y económico: superaron las capturas permitidas anuales (1.700 Tm) y la mayoría de individuos estaban por debajo de la talla mínima legal.

El varamiento de langostas desató en las playas una auténtica locura dado que son muy apreciadas (25 US$/kg en el restaurante).

wsci_01_img0018

En febrero de 2002 sucedió otro varamiento masivo (1000 Tm) de langostas en Elands Bay. Vean al culpable en la imagen siguiente. Fuente: waterencyclopedia

Según declaraciones de Sonya Strydom, directora del «Elands Bay Hotel»: «Llegaba gente de todas partes, incluso de Johanesburgo y Durban. Este pueblo es demasiado pequeño para acoger a miles de personas. Atravesaban céspedes y dunas con sus vehículos, robaban papeleras para meter luego las langostas. Fue terrible.» (trad.: Africa News Services, 19/04/1999).

converted PNM file

Bahía de Santa Elena. Esta marea roja del ciliado Mesodinium rubrum fue la causante del varamiento de langostas en Elands Bay (2002). Fuente: Earth Observatory (NASA).

La noche del 16 de abril de 1999 se amontonaron unas 100 toneladas de langostas sobre las playas de Elands Bay.

Pero esta vez la policía y el ejército de la marina acordonaron la «zona cero» para evitar problemas y trasladar incluso ejemplares vivos hacia regiones como Saldanha Bay.

Cuando en vez de langostas escapan los peces del mar, la cosa es aún más espectacular.

Por casualidades de la vida, un taxista de Florianópolis compartió con mi colega Santi Fraga el siguiente vídeo en una playa de África.

Aunque no sepamos dónde se grabó lo que vemos tiene toda la pinta de ser un varamiento de sardinas o jureles que escapan hacia la orilla huyendo de aguas anóxicas…

Pero además de la anoxia, existe otro motivo de muertes y varamientos de fauna en esta región:

Las erupciones tóxicas de sulfuro de hidrógeno !!

namibia-tmoa2003009

Pluma de azufre en Namibia (Enero 2003). Fuente: J. Descloitres, MODIS Rapid Response Team, NASA/GSFC

En las imágenes de satélite pueden confundirse con proliferaciones de fitoplancton, pero son microcristales de azufre a partir de la oxidación del sulfuro de hidrógeno (H2S) liberado por el fondo marino.

Las manchas de azufre suelen durar entre 1-6 días, alcanzando extensiones máximas de unos 20 km. El mar cobra primero un aspecto lechoso y luego verdoso al oxidarse el azufre.

Parte del H2S llega a la atmósfera produciendo un aroma típico a huevos podridos, acompañado de la aparición de peces muertos y langostas en la costa, a lo cual están habituados los residentes en la región (y también las gaviotas) según el Earthobservatory (NASA).

El origen del azufre está en las condiciones anóxicas de un cinturón fangoso de sedimentos costeros de hasta 20 metros de grosor (compuesto principalmente por restos de diatomeas), que permite proliferar a las bacterias anaeróbicas y descomponer materia orgánica en los sedimentos utilizando iones sulfato (SO42-). Luego el azufre se reduce (S2-) y se combina con hidrógeno para formar H2S.

thiomargarita

Thiomargarita namibiensis. La llaman «La perla de Namibia», por sus cadenas brillantes. Fuente: teachoceanscience.net

Una de dichas bacterias es Thiomargarita namibiensis, la mayor especie que se conoce.

La descubrieron Schulz y col. (1999) en la plataforma de Namibia y cada célula llega a medir 0.75 mm (una bacteria típica mide entre 0.0002-0.002 mm). Los gránulos en la imagen son acumulaciones de azufre.

Como curiosidad (y nota positiva entre tanto desastre), existe un góbido encantado de la vida con estas condiciones tóxicas. Durante el día permanece en los sedimentos anóxicos ricos en azufre.

Posee una tolerancia extrema a la anoxia y adaptaciones fisiológicas que le permiten evitar la intoxicación con H2S. Pero no están aletargados en el fondo ni mucho menos. Permanecen activos y se alimentan del fango con restos de fitoplancton, a salvo de la mayoría de predadores.

benguela-goby

El góbido de Benguela que «contiene la respiración»: Sufflogobius bibarbatus. Autor: Hege Vestheim. Fuente: Science 2.0

De noche este pequeño héroe sube a la superficie, digiere la comida y recupera la oxigenación en su sangre. También frecuenta las medusas, abundantes en los ecosistemas sobreexplotados de Benguela tras el colapso de la sardina.

Esas medusas forman parte de su alimentación además de ofrecerle protección frente a predadores como la merluza y el jurel, que las evitan a toda costa…

Los góbidos cumplen un papel ecológico destacado en estos ecosistemas alterados. Se han convertido en una de las presas principales de peces, aves y mamíferos marinos en la región. A pesar de esto su fantástica adaptación al medio les permite sobrevivir y no sólo eso: aprovechan recursos que nadie quiere como el fango y las medusas recuperando energía para el ecosistema.

¿Cómo evolucionarán los episodios de anoxia en el futuro?

Pues a pesar de que estudios previos digan lo contrario, un trabajo reciente de Pitcher y col. (2014) concluye que no han habido cambios significativos en los últimos 50 años en las condiciones de anoxia en la bahía de Santa Elena.

Sin embargo, en la región de Benguela (al revés que en otras zonas de afloramiento como las rías gallegas), los vientos que producen el afloramiento han aumentado de intensidad en décadas recientes. Y esto sí podría incrementar en el futuro la productividad así como la frecuencia de los episodios de anoxia y las erupciones sulfurosas.

Referencias:

-De Young, C. y col. Climate change implications for fisheries of the Benguela Current region – Making the best of change. FAO/Benguela Current Commission Workshop, 1–3 November 2011, Windhoek, Namibia. FAO Fisheries and Aquaculture Proceedings. No. 27. Rome, FAO. 125 pp. (2012)
-Ohde T. y col. Identification and investigation of sulphur plumes along the Namibian coast using the MERIS sensor. Cont. Shelf Res. 27: 744-756 (2007)
-Pitcher G.C. & Calder D. Harmful algal blooms of the southern Benguela Current: a review and appraisal of monitoring from 1989 to 1997. Afr. J. Mar. Sci. 22: 255-271 (2000)
-Pitcher G.C. & Probyn T.A. Anoxia in southern Benguela during the autumn of 2009 and its linkage to a bloom of the dinoflagellate Ceratium balechii. Harmful Algae 11:23-32 (2011)
-Pitcher G.C. y col.  Dynamics of oxygen depletion in the nearshore of a coastal embayment of the southern Benguela upwelling system, J. Geophys. Res. Oceans, 119, doi:10.1002/2013JC009443 (2014)
-Pitcher G.C. & Probyn T.A. Suffocating Phytoplankton, Suffocating Waters—Red Tides and Anoxia. Front. Mar. Sci. 3:186. doi: 10.3389/fmars.2016.00186 (2016)
-Schulz H.N. y col. Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493-495 (1999)
-Utne-Palm A.C. y col. Trophic Structure and Community Stability in an Overfished Ecosystem. Science 329 (5989), 333-336. doi: 10.1126/science.1190708 (2010)