Entradas

The Florida Red Tide

[Imagen de Portada: Andrew West/The News-Press/USA TODAY Network]

Toda esta gente no conoscian los tiempos por el sol ni la luna, ni tienen cuenta del mes y año, y mas entienden y saben las diferencias de los tiempos quando las frutas vienen a madurar y en tiempo que muere el pescado, y el aparescer de las estrellas en que son muy diestros y exercitados.

[Naufragios, Núñez Cabeza de Vaca, 1542]

Este es el primer testimonio de daños sobre fauna marina que podría relacionarse con proliferaciones tóxicas en el Golfo de México. Aunque esos peces también podrían haber muerto por otras causas naturales (estrés por cambios bruscos de temperatura o salinidad).

Dicho relato se refiere a nativos americanos en la isla de Malhado, un lugar impreciso en la costa de Texas (EEUU). Allí naufragó en 1528 la fallida expedición española de Pánfilo Narváez que pretendía explorar y conquistar Florida…pero ésa es otra historia.

El primer documento que relaciona muertes de peces con molestias respiratorias en humanos tal y como sucede en las proliferaciones tóxicas de Karenia brevis− es de Núñez Ortega (1879) y se refiere a un suceso en Veracruz (México) en 1875. También describe que dicho fenómeno era conocido desde antes en la región.

Concentraciones de Karenia brevis en la costa de Florida (julio-agosto 2018). Fuente: Florida fish and wildlife conservation commission.

Pero el primer informe que incluye peces muertos, molestias respiratorias y una marea roja en Florida se publicó en 1917 (H.F. Taylor).

A pesar de fuentes tan antiguas como las ya citadas (y otras muchas anteriores al siglo XX) 1917 sería el primer ejemplo con evidencias suficientes para señalar a Karenia brevis según Magaña y col. (2003).

Hoy en día, a 15 de agosto de 2018, persiste en el suroeste de Florida la marea roja de Karenia brevis: la más intensa y dañina en más de una década, aunque a este paso quizás supere la mayoría de registros históricos.

La marea roja tóxica de Karenia comenzó en el suroeste de Florida en octubre de 2017. Diez meses después el Fish and Wildlife Research Institute (FWRI) de Florida continúa recogiendo informes sobre muertes de fauna marina y molestias respiratorias en la población.

La magnitud del desastre ecológico y el impacto socio-económico han obligado al gobernador de Florida, Rick Scott, a declarar el 13 de agosto el estado de emergencia en 7 condados [Diario Las Américas, 13-VIII-2018].

Dicha declaración se suma a una anterior en otros 7 condados costeros de Florida, debido a las descargas de cianobacterias de agua dulce del lago Okeechobee. De este asunto tratamos el año pasado en Cianobacterias en la Costa del Tesoro y ya ven: en 2018 ha vuelto el problema.

Biólogos estudiando el tiburón ballena muerto en la isla de Sanibel el 22 julio (Florida). Autor: Florida Fish and Wildlife Conservation Commission. Fuente: nola.com

Pero hoy hablaremos de la marea roja de Florida: uno de los fenómenos más impactantes provocados por microalgas nocivas y recurrente casi todos los años.

El saldo actual del episodio tóxico 2017-2018 es devastador, sobre todo para los peces: miles de toneladas han arribado a las costas de Florida dejando estampas desoladoras en playas a menudo llenas de turistas.

Para darles una idea en lo que llevamos de agosto sólo en el condado de Lee se han recogido 1.200 toneladas de peces muertos además de otros animales [USA TODAY, 15-VIII-2018].

Entre los peces muertos por las brevetoxinas de Karenia destacan mújoles, bagres, peces globo, róbalos, truchas, roncos e incluso un mero gigante.

Pero también se han registrado numerosas muertes de crustáceos, anguilas, manatíes (80!), centenares de delfines, tortugas (400 en los últimos 9 meses), e incluso un joven tiburón ballena de 8 metros.

En el siguiente vídeo Andy Coetzee, de «Fishing for Giants«, descubre sábalos muertos, uno de ellos con una edad aproximada de 40 años.

Así resumía la situación Heather Barron, veterinaria en la clínica para la rehabilitación de vida salvaje en Florida: “Anything that can leave has, and anything that couldn’t leave has died. [National Geographic, 8-VIII-2018]”.

Diversas instituciones y programas de investigación como el Sarasota Dolphin Research Program, la Universidad de Florida, el Mote Marine Laboratory & Aquarium y por supuesto el FWC Fish and Wildlife Research Institute están trabajando en las recuperaciones, necropsias e identificaciones de mamíferos marinos y tortugas.

Algunos datos sobre Karenia brevis

Ilustración de Karenia brevis en la descripción original de Davis (1948).

Se trata de un dinoflagelado descrito como Gymnodinium brevis después de un bloom en Florida en 1946-1947 (Davis, 1948). Luego pasó a ser Ptychodiscus brevis (Steidinger, 1979) y actualmente es Karenia brevis (Daugbjerg y col. 2000).

La historia de su nombre en honor a la ficóloga estadounidense Karen Steidinger, y una breve reseña sobre este organismo, la compartí en El agua amarga de Karenia.

Pero hoy les contaré más cosas de esta microalga.

Es una especie fotosintética desnuda y esto no es anecdótico: sus células son relativamente frágiles y se rompen fácilmente por la acción de las olas liberando sus toxinas en el agua y aerosol marino.

Sus óptimos de crecimiento en el laboratorio están entre 22-28 ºC y 30-34 unidades de salinidad. Toleran un rango amplio de luz, adaptadas para crecer a intensidades bajas pero soportando también la luminosidad que reina en la superficie del mar. K. brevis posee una composición pigmentaria inusual debida a cloroplastos terciarios adquiridos de haptofitas (en sustitución de los secundarios «canónicos» en dinoflagelados, donde la peridinina es el carotenoide principal).

Sus células miden 20-40 μm aunque en el medio natural se han observado hasta 90 μm. Se reproducen la mayor parte del tiempo asexualmente (por fisión binaria). También poseen fases sexuales en su ciclo de vida y forman células diploides (planozigotos), aunque la formación posterior de quistes de resistencia no ha sido demostrada.

No obstante, la existencia de dichos quistes ha sido sugerida por algunos investigadores y de ser así podrían jugar un papel importante en el inicio de los blooms. También se cree que K. brevis podría desarrollar parte de su ciclo de vida en el bentos ya que suele proliferar en aguas someras bien iluminadas. Pero como ven hacen falta más estudios sobre su ciclo de vida. 

En el siguiente vídeo pueden ver un cultivo de K. brevis que mantenemos en el centro oceanográfico de Vigo (IEO).

Karenia brevis es tan dañina porque…

…produce brevetoxinas. Se trata de neurotoxinas lipofílicas responsables del síndrome NSP: carecen de sabor, olor y son termoestables. Los daños que ocasionan se deben a su afinidad por los canales de sodio dependientes de voltaje. Actúan sobre el mismo dominio hidrofóbico al que se unen las ciguatoxinas y los síntomas que producen son similares, aunque menos peligrosos para las personas >> no hay casos de fallecidos por brevetoxinas <<

Estructura de las brevetoxinas tipo A. La PbTx-1 tiene como radical (R): CH2C(=CH2)CHO. Fuente: Hua y col. (1996).

Las brevetoxinas despolarizan las neuronas interfiriendo en la transmisión de los impulsos nerviosos. Esto ocasiona problemas respiratorios, cardíacos, y otra serie de daños como inmunodepresión y hemólisis (destrucción de los glóbulos rojos).

K. brevis produce 2 tipos de brevetoxinas, PbTx-1 y PbTx-2. Esta última se transforma en PbTx-3 al romperse las células y persiste en el agua y aerosol marino después de que los blooms de Karenia desaparezcan.

La parálisis provocada por las brevetoxinas impide a los manatíes nadar hacia la superficie para respirar y suelen morir ahogados. En instalaciones de rehabilitación como esta del Zoo de Tampa les colocan flotadores y chalecos para que puedan respirar hasta que se recuperan de la intoxicación por brevetoxinas. Fuente: Florida Fish and Wildlife Conservation Commission (The Washington Post, 17-VIII-2018)

Las brevetoxinas (y otros compuestos fosforilados producidos por K. brevis) tienen un potente efecto ictiotóxico. Ocasionan la muerte a peces pero además, por bioacumulación en la cadena trófica, a multitud de fauna marina incluyendo mamíferos, aves y tortugas, por absorción de toxinas en el agua, al inhalar aerosol marino y/o alimentarse de peces, marisco, plantas acuáticas y algas contaminadas.

Los síntomas en peces intoxicados incluyen giros violentos, natación en círculos, pérdida del equilibrio, parálisis respiratoria y muerte. En el caso de mamíferos como los manatíes la intoxicación no tiene por qué ser aguda y la muerte puede suceder varios días e incluso semanas después de la ingestión/inhalación de brevetoxinas.

Las brevetoxinas no son dañinas para el marisco pero por encima de 5.000 céls/L de K. brevis se considera que supera los niveles máximos permitidos de NSP y se prohíben su extracción y comercialización en Florida. Los síntomas de la intoxicación alimentaria por NSP en humanos son diarrea y malestar general durante unos 3 días.

En cuanto a la inhalación de aerosol marino, las personas que tengan patologías como asma, enfisema u otra clase de problemas respiratorios deben evitar visitar las zonas de costa afectadas para no poner en riesgo su salud.

¿Qué factores explican las mareas rojas de Karenia brevis?

Los blooms de K. brevis son más frecuentes en la zona este del Golfo de México, en particular entre Tampa Bay y Sanibel Island (Florida). El episodio actual no es una excepción, afectando a 150 km de la costa entre Anna Maria Island y Naples [The Guardian, 13-VIII-2018].

Promedio de abundancia (LOG) de K. brevis entre los periodos 1954-63 y 1994-2002. Datos referidos a la franja a 0-5 km de la costa entre Tampa Bay y Sanibel Island. Fuente: Fig. 11B, Brand & Compton (2007).

Las proliferaciones de K. brevis son un fenómeno natural en la región del Golfo de México, tal como sugieren los testimonios históricos sobre muertes de peces durante siglos, pero la influencia de las actividades humanas podría estar detrás del aumento observado en la costa oeste de Florida en las últimas décadas:

>>K. brevis fue 20 veces más abundante en promedio entre 1994-2002 que entre 1954-1963 (Brand & Compton 2007)<<

Los blooms de K. brevis en Florida se forman típicamente en otoño, coincidiendo con los máximos de precipitaciones anuales y descargas de aguas continentales.

Sin ir más lejos, como recordarán todos ustedes, en septiembre de 2017 el suroeste de Florida fue azotado por el violento huracán Irma. Y se cree que fenómenos como éste podrían estar relacionados con el desarrollo posterior de mareas rojas por el aporte extra de nutrientes procedente de aguas continentales, incluyendo aguas subterráneas submarinas (Hu y col. 2006).

No en vano K. brevis es también 20 veces más abundante en la franja a 0-5 km de la costa que a 20-30 km. La generación de frentes costeros de salinidad (y temperatura debido a la entrada de aguas más frías procedentes del norte del Golfo), se sospecha que pueden ser factores físicos que favorezcan la concentración de K. brevis en dicha región.

En el mantenimiento de un bloom los nutrientes desempeñan un papel esencial. No nutrients no party. Y la preocupación va in crescendo porque en las últimas décadas en Florida se observan blooms no sólo en otoño sino también en invierno y primavera, llegando a prolongarse en los episodios más graves hasta 18 meses!

Cuenca original del río Caloosahatchee (azul) y cuenca actual (rojo) tras su conexión con el lago Okeechobee en la década de 1960. Fuente: Brand & Compton (2007).

El aumento de la presión demográfica y de las descargas de aguas continentales con elevados niveles de nutrientes como el río Caloosahatchee (procedente del lago Okeechobee), podrían afectar no al inicio del bloom (que parece atender a factores físicos) pero sí a su estacionalidad, aumentando la duración e intensidad de las mareas rojas que llegan incluso a extenderse de un año a otro como sucede en el presente.

Unido a esto se da una circunstancia especial: la plataforma costera de Florida posee grandes depósitos de fosfatos y el ecosistema se encuentra limitado por nitrógeno. Esta particularidad favorece a cianobacterias fijadoras de nitrógeno atmosférico como Trichodesmium erythraeum.

Sus proliferaciones masivas en el Golfo de México podrían aportar una fuente de nitrógeno adicional para K. brevis y ambos fenómenos han llegado a relacionarse en estudios como «Saharan dust and Florida red tides: the cyanophyte connection» (Walsh & Steidinger 2001).

Pero sobre este asunto y la relación a su vez con el polvo del desierto del Sáhara no me extenderé porque ya se lo conté en Más respuestas sobre Trichodesmium.

El origen de las mareas rojas de Karenia brevis continúa siendo objeto de arduo debate en la actualidad. La periodista de National Geographic, Maya Wei-Haas se lo planteaba así a Donald Anderson, director de la U.S. National Office for Harmful Algal Blooms: Today, are Florida’s red tides human-caused or entirely natural?” La ambigua respuesta de Anderson fue: The answer is probably some of both.

Los efectos de la marea roja en Captiva (Florida). Autor: Cristóbal Herrera (EPA). Fuente: The Guardian.

Referencias:

-Aké-Castillo JA, Okolodkov YB, Rodríguez-Gómez CF, Campos-Bautista G. Florecimientos algales nocivos en Veracruz: especies y posibles causas (2002-2012), p. 133-146. En: A.V. Botello, J. Rendón von Osten, J. A. Benítez y G. Gold-Bouchot (eds.). Golfo de México. Contaminación e impacto ambiental: diagnóstico y tendencias. uac, unamicmyl, cinvestav-Unidad Mérida. 1174 p. (2014).
-Brand LE, Compton A. Long-term increase in Karenia brevis abundance along the southwest Florida coast. Harmful Algae 7:232–252 (2007).
-Brand LE, Campbell L, Bresnan E. Karenia: The biology and ecology of a toxic genus. Harmful Algae 14:156-178 (2012).

Peces muertos en la costa de Sanibel Island. Autor: Ben Depp. Fuente: National Geographic.

-Daugbjerg N, Hansen G, Larsen J & Moestrup Ø. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39: 302-317 (2000).
-Davis CC. Gymnodinium brevis sp. nov., a cause of discolored water and animal mortality in the Gulf of Mexico. Bot. Gaz. 109:358–360 (1948).
-Hu C, Muller-Karger FE, Swarzenski PW. Hurricanes, submarine groundwater discharge, and Florida’s red tides. Geophys. Res. Lett 33:L11601 (2006).
-Hua Y, Lu W, Henry MS, Pierce RH, Cole RB. On-line liquid chromatography–electrospray ionization mass spectrometry fro determination of brevetoxin profile in natural “red tide” algae blooms. J. Chromatogr. 750:115–125 (1996).

Sanibel Island (2 de agosto). Autor: Andrew West/The News-Press/USA TODAY Network. Fuente: ABC News

-Magaña HA, Contreras C, Villareal TA. A historical assessment of Karenia brevis in the western Gulf of Mexico. Harmful Algae 2:163–171 (2003).
-Núñez Cabeza de Vaca, A. Naufragios (1542, 1555). Disponible en: Wikisource.
-Núñez Ortega, DA. Ensayo de una explicacion del origen de las grandes mortandades de peces en el Golfo de México. La Nat. 6:188–197 (1879).
-Pierce RH, Henry MS. Harmful algal toxins of the Florida red tide (Karenia brevis): natural chemical stressors in South Florida coastal ecosystems. Ecotoxicol. 17(7):623–631 (2008).
-Salceda M, Ortega A. Neurotoxinas: significado biológico y mecanismos de acción. Elementos 74:29 (2009). Disponible en elementos.buap.mx
-Steidinger KA. Collection, enumeration and identification of free-living marine dinoflagellates. En: Taylor DL & Seliger HW.  Toxic dinoflagellate blooms. Proceedings of the Second International Conference on Toxic Dinoflagellate Blooms, Key Biscayne, Florida, October 31-November 5, 1978 . pp. [i]-xviii, [1]-505. New York, Amsterdam, Oxford: Elsevier/North-Holland.
-Taylor HF. Mortality of fishes on the west coast of Florida, Rep. U.S.A. Commun. Fish. Doc. No. 848, 24 pp (1917).
-Walsh JJ, Steidinger KA. Saharan dust and Florida red tides: the cyanophyte connection. J. Geophys. Res. 106: 11597–11612 (2001).
-Página web: Neurologic Shellfish Poisoning (NSP). Disponible en: Marine Biotoxins (FAO).
-Página web: Red Tide Is Devastating Florida’s Sea Life. Are Humans to Blame?. Disponible en: National Geographic.
-Página web: Red Tide in Florida and Texas. Disponible en NOAA.

Cianobacterias en la Costa del Tesoro

La proliferación de Trichodesmium en Canarias me ha recordado otro incidente de enorme impacto mediático, social y político. Sucedió a mediados de 2016 al otro lado del Atlántico, en Florida (EEUU). En este caso fueron cianobacterias de agua dulce las que llegaron al mar. Ahora verán cómo, pero ya les adelanto que eran tóxicas y que se montó un buen lío !!

El lago Okeechobee es el mayor de Florida con 1890 km2 y su nombre significa «agua grande» en la lengua de la tribu hitchiti (gracias Wikipedia). Pronunciado en gallego (de la tribu gallega de Galicia) significa «Oh, quee lluevee«, muy apropiado como veremos.

Esquema de la entrada y salida del agua en el lago Okeechobee. Autor: Riley D. Champine, NG Staff. Fuente: USGS, USDA, NASA, U.S. Army Corps of Engineers, South Florida Water Management District

A pesar de su extensión la profundidad media del lago es de 2.7 metros. El Okeechobee está clasificado como cuerpo de agua potable de clase I. Sus afluentes son principalmente el río Kissimmee desde el norte y su desagüe natural era la región de los Everglades, hacia el sur.

Y digo era porque el lago posee un sistema de diques que lo circundan casi por completo para regular el nivel del agua, bloqueando su comunicación natural con los Everglades.

El sistema actual de diques (Herbert Hoover) se construyó reforzando otros anteriores para evitar catástrofes por lluvias e inundaciones a causa de tormentas y huracanes. No en vano uno de ellos costó en 1928 la vida de al menos 2500 habitantes en la región.

Durante la época de lluvias el nivel del lago puede subir peligrosamente y la única forma de regular su volumen es descargando millones de litros hacia las costas este y oeste, a través de canales a los ríos Caloosahatchee y St. Lucie. Si pinchan en la imagen verán a qué me refiero.

El Okeechobee está sometido a una gran presión antropogénica y eutrofización por vertidos de origen urbano y ganadero al norte, y agrícolas al sur (caña de azúcar). Si a esto le añadimos el estancamiento del agua y condiciones ambientales propicias a mediados de año (altas temperaturas + luz en un lago extenso y somero) tenemos la receta perfecta para la proliferación de cianobacterias.

Entre noviembre 2015 – mayo 2016 se registró una cantidad excepcional de lluvia, con el invierno más húmedo en las series históricas de muchas ciudades del sur de Florida. Esto hizo que el Cuerpo de Ingenieros de la Armada de EEUU se viera obligado a rebajar el nivel del lago desde finales de enero (varios meses antes de lo habitual) para salvaguardar los diques que protegen los terrenos vecinos del Okeechobee. Además, debido a la antigüedad de los diques, mantienen el nivel del agua por debajo de lo normal por precaución.

Microcystis aeruginosa. La barra indica 20 micras. Fuente: Rosen y col. (2017)

El 13 de mayo los ingenieros comunicaron la presencia de un bloom de «microalgas» que cubría 85 km2 en el Okeechobee. En junio, con el bloom «viento en popa a toda vela«, las operaciones de regulación del agua provocaron la descarga de aguas verdosas (color guacamole) cargadas de cianobacterias en los estuarios y costas de Florida.

El 1 de julio se comenzó a reducir la descarga del lago pero para entonces el mal ya estaba hecho. En el lago, a finales de julio el bloom llegó a cubrir 1/3 de la superficie total (619 km2).

La proliferación estuvo dominada por Microcystis aeruginosa. Su presencia ya estaba documentada en el lago desde comienzos de los 80′ y suele ser habitual en los blooms de cianobacterias del Okeechobee.

Aspecto del bloom en el estuario del St. Lucie (Stuart, 11 julio). Autor: Joe Raedle (GETTY). Fuente: National Geographic

Junto a ella aparecían otras cianobacterias en menor proporción (hasta 26 especies) según un informe de Rosen y col. (2017) incluyendo a los géneros Dolichospermum, Nostoc y Pseudanabaena. Tanto Microcystis como los demás géneros son productores potenciales de diversas toxinas como las microcistinas, saxitoxinas, anatoxinas, etc.

Estas y otras cianotoxinas impiden los usos agrícolas y potables del agua en las reservas continentales donde proliferan, ya que pueden representar un serio peligro para la salud. Otro ejemplo de esto son los blooms de Microcystis en la región de Los Grandes Lagos.

Los vientos predominantes arrastraron las cianobacterias hacia el canal del este, transportándolas sobre todo al río St. Lucie y de ahí a la costa atlántica, conocida como Treasure Coast. La enorme masa de cianobacterias vertida al mar extendió el bloom varios kilómetros hacia el océano abierto.

Vistas del canal y estuario de St. Lucie afectados por el bloom de cianobacterias (24 junio). Autor: Eric Hasert (Treasure Coast Newspapers). Fuente: State of Florida Response to 2016 South Florida Algal Bloom.

En la costa el impacto socioeconómico fue enorme debido a las pérdidas del sector turístico por el aspecto y el olor del agua, así como la alarma sobre la salud de las personas y los ecosistemas marinos.

Pero no crean que era la primera vez: ya van 8 desde 2004, aunque la de 2016 ha sido la peor.

La coordinación y comunicación de la situación no funcionó como en ocasiones anteriores, desbordadas las autoridades por las dimensiones del problema.

Florida declaró el estado de emergencia en 4 condados registrando muertes de peces, marisco, de al menos un manatí y molestias en personas. Y en años anteriores también se observaron daños en la flora y fauna de los estuarios asociados a estas descargas de cianobacterias.

Central Marine (Stuart). Autor: Greg Lovett (The Palm Beach Post, 29 junio). Fuente: State of Florida Response to 2016 South Florida Algal Bloom.

Eso sí, el Departamento de Protección Medioambiental de Florida creó una página web para hacer pública la información en tiempo real sobre la evolución e impacto del bloom.

La web incluía datos de análisis bisemanales de las condiciones del agua, estado de las playas, análisis de toxinas (microcistinas, cilindrospermopsinas y anatoxina-a).

En este vídeo la CBS resumía el panorama, con imágenes impactantes incluyendo a un manatí, y la visión de la costra formada por las cianobacterias de agua dulce, putrefactas tras morir en el mar.

Pruebas para eliminar el bloom de cianobacterias en una «marina» del río St. Lucie (11 julio). Joe Raedle (GETTY). Fuente: National Geographic

Ante la gravedad de la situación se llevaron a cabo iniciativas no permitidas para mitigar el bloom. Desconozco cuáles en concreto, aunque en la web podemos encontrar imágenes como esta.

El riesgo de métodos tan «expeditivos» radica en el posible aerosol que puede provocar con el consiguiente riesgo sanitario para las personas. Antes de intentar nada es importante realizar pruebas a pequeña escala para evitar que el remedio sea peor que la enfermedad.

Para regular este tipo de iniciativas y estudiar las mejores opciones se creó un comité oficial que recibiría y estudiaría propuestas para mitigar el bloom.

Y así fue: recibieron 52 proyectos incluyendo métodos mecánicos (bombas de succión, skimmers, barreras flotantes…), biológicos (biopolímeros, fertilizantes para promover crecimiento microbiano…), químicos (agentes floculantes, bactericidas…) o combinaciones de varios de ellos.

Los miembros del comité oficial se decantaron por métodos mecánicos, pero el bloom se dispersó antes de que pudiesen poner en marcha iniciativas piloto. No obstante, la idoneidad de dichos métodos sigue en estudio.

Los humedales de los Everglades son la salida natural del Okeechobee. También han sufrido una progresiva destrucción e impacto ambiental por la influencia de las actividades humanas. Fuente: FloridaEverglades

El problema es que no hay experiencia suficiente en el caso de una proliferación costera con estas dimensiones. Muchos de ellos están pensados para mitigar los efectos sobre volúmenes más pequeños en aguas continentales (estanques, lagos), o en el oceáno abierto donde los efectos directos sobre las poblaciones no suponen un quebradero de cabeza.

¿Cuál es la solución a todo este despropósito medioambiental?

Por un lado está claro que la solución fundamental reside en mejorar la calidad de las aguas del Okeechobee. Pero además no hay otra forma de regular el agua que no sea vertiéndola al mar. Aunque existen alternativas.

En 2014, después de una situación similar en el verano anterior, los votantes de Florida decidieron aprobar por un 75% una enmienda a la constitución del estado para dedicar 1/3 de los ingresos por transacciones inmobiliarias para comprar y recuperar tierras al sur del lago.

Protestas el 2 de julio de 2016 solicitando la compra de tierras para solucionar el problema del Okeechobee. La imagen la twiteó el propio Sheriff del Condado de Martin. Fuente: Twitter @MartinFLSheriff

El objetivo: construir en ellas un depósito de almacenamiento y filtrado de agua que podría ser vertida a los Everglades, recuperando en parte el curso natural del agua a través del continente.

Las quejas por parte de la sociedad vienen de que a pesar de la decisión popular no se han ejecutado dichos planes, y así lo dejaron patente en esta imagen 3500 personas cerca de Stuart, pidiendo que se compren las tierras de una vez.

No existe un único culpable de esta situación y a pesar del clamor popular parece casi imposible llegar a un acuerdo a corto plazo entre los sectores económicos implicados.

Como conclusión me quedo con una frase de Larry Brand, biólogo marino de la Universidad de Miami, en un artículo de National Geographic (26-VII-2016): No matter which way that water goes, it creates problems. It is a case of who screams the loudest.

Referencias:

-Rosen B.H. y col. Cyanobacteria of the 2016 Lake Okeechobee and Okeechobee Waterway Harmful Algal Bloom. Disponible en USGS
-Slimy Green Beaches May Be Florida’s New Normal. Disponible en: National Geographic
-State of Florida Response to 2016 South Florida Algal Bloom. Disponible en epa.gov
-Why toxic algae blooms like Florida’s are so dangerous to people and wildlife. Disponible en: The Conversation

 

El agua amarga de Karenia

Karen Steidinger

Karenia brevis. Así se llama «el alga de Karen Steidinger», un género nuevo de dinoflagelados bautizado en el año 2000 en su honor. K. Steidinger es una ficóloga y oceanógrafa estadounidense retirada en 2003, aunque sigue colaborando en el Florida Institute of Oceanography (Univ. of South Florida).

Su larga y prolífica carrera mereció un artículo especial en la revista Continental Shelf Research en 2008. Cuando pedí el artículo a su co-autora (Pat Tester), ésta me respondió (cito con su consentimiento): «It is my pleasure to provide a pdf of the Dedication of Dr. K.A. Steidinger. She is such a wonderful friend and combines her strong knowledge of taxonomy and ecology better than anyone I know».

Una dedicatoria así es el mejor premio, aunque la Dra. Steidinger también recibió en 2003 uno de los mayores reconocimientos a su trabajo con el «Lifetime Achievement Award» de la sociedad ficológica norteamericana.

Volviendo a Karenia brevis, es una especie «mundialmente» famosa por sus proliferaciones endémicas en el golfo de México. Esto quiere decir que sólo ocurren en esta zona del mundo, a pesar de que pensemos que el ancho mar no tiene fronteras…!!

Karenia brevis al microscopio electrónico y óptico (400X).
La primera imagen está disponible en
http://myfwc.com/research/redtide/

Karenia es uno de esos dinoflagelados que «robó» sus cloroplastos a otras algas (haptofitas). Tiene forma «aplanada» y al moverse recuerda a una moneda girando. Pero más que en palabras, la podemos ver en imágenes.

En el primer vídeo K. brevis avanza en línea recta, primero lentamente y luego «a todo gas»…o mejor dicho «a todo flagelo». En el segundo vídeo podemos ver a otra célula girando sobre si misma…y luego le da un «paralís«.

 

 

Abundancia de Karenia brevis (9 marzo 2012)
en la costa del estado de Florida actualizado semanalmente por el FWRI.
Fish Wildlife Research Institute (EEUU)
http://myfwc.com/research/redtide/events/status/statewide/

Karenia brevis produce unas neurotoxinas llamadas «brevetoxinas», cuyos efectos en la fauna marina y humanos llevaría un buen rato enumerar, cojo carrerilla y cito algunos…

Mortandades masivas en peces, y también en mamíferos marinos (delfines y manatíes) aves y tortugas, etc…así como intoxicaciones alimentarias en humanos (síndrome neurotóxico, gastroenteritis), irritaciones de la piel, picor en los ojos, problemas respiratorios (neumonía, bronquitis y asma) por inhalación del aerosol marino, etc…

Las brevetoxinas se liberan en agua y aire al romperse las frágiles células de Karenia debido al oleaje, por ejemplo…y es entonces cuando pueden ser letales para la fauna marina. En humanos todos los síntomas son reversibles…pero aparte de la salud, también afecta al turismo, cierres en la pesca y venta de marisco…

http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=9137

En México, a estas proliferaciones tóxicas también se les conoce con el nombre de «agua amarga» ó «agují». Desde el s.XVII existen citas de mareas tóxicas en el golfo de México, la más antigua (y fiable) data de 1648, por un historiador y monje franciscano (Fray Diego López de Cogolludo) que describió un olor pestilente en la ciudad de Mérida por la gran cantidad de peces muertos que arribaban a la costa.

En esta última imagen, del Earth Observatory de la NASA, vemos la mancha que produjo una proliferación de Karenia brevis (> 1 millón de células/litro) en la costa de Florida en febrero de 2002…Y en 2005, pero en la costa mexicana de Tabasco, se detectaron hasta 8 millones de células por litro. Así que los picores de la salsa que lleva el mismo nombre no son nada al lado de de las «mareas rojas» de Karenia

Referencias:

-Borbolla ME, Colín FA, Vidal MR, Jiménez MM. Marea roja de Tabasco, 2005, Karenia brevis. Salud en Tabasco 12: 425-433 (2006).
Magaña HA, Contreras C, Villareal TA. A historical assessment of Karenia brevis in the western Gulf of Mexico. Harmful Algae 2:163–171 (2003).
Tester, P.A. and D.F. Millie. Dedication to Dr. Karen A. Steidinger. Cont. Shelf Res. 28:3-10 (2008).