Hola Dinophysis, qué hay de nuevo?

Hace mucho tiempo en un blog muy muy lejano les hablé de Dinophysis, un género de dinoflagelados productor de toxinas diarreicas, responsable de episodios de DSP por consumo de marisco. Pero aquello fue en 2011: hoy en día hemos aprendido muchas cosas nuevas y en esta entrada les contaré algunas.

1>Los cloroplastos de Dinophysis no son permanentes

Por aquel entonces sabíamos que Dinophysis se alimenta del ciliado Mesodinium rubrum, al cual roba los cloroplastos que éste ingiere de criptofíceas (habitualmente del género Teleaulax). Dicho mènage a trois sigue siendo la unica forma de cultivar Dinophysis (Park y col. 2006).

Estructura estrellada de los cloroplastos (Chl) en D. acuminata, con los pirenoides (Pyr), responsables de la fijación de carbono mediante la enzima RUBISCO, en posición central. Fuente: García-Cuetos y col (2010)

Pero había dudas sobre si Dinophysis tenía cloroplastos permanentes porque los estudios moleculares y morfológicos eran contradictorios. Los cloroplastos en los miembros del mènage a trois eran genéticamente idénticos pero los de Dinophysis eran morfológicamente distintos a los demás.

Se agrupan con los pirenoides en posición terminal, unidos en el centro de una estructura estrellada con los tilacoides hacia el exterior. Los cloroplastos en Dinophysis están recubiertos por 2 membranas y sus tilacoides organizados en pares (García-Cuetos y col. 2010).

Nada de esto sucede en Mesodinium ni en las criptofíceas y dichos autores titularon su trabajo con un contundente: «The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts«.

No obstante, Kim y col. (2012) rebatieron esa conclusión con un brillante y sencillo experimento donde demostraron que Dinophysis modifica el aspecto de los cloroplastos robados a Mesodinium.

Observaron que Dinophysis no puede reparar los daños ocasionados por la luz a sus cloroplastos, que se deterioran y pasan de rojo brillante a verde paliducho. Cuando esto sucede nunca recuperan su color original. Se debe a que las ficoeritrinas se degradan en mayor medida que otros pigmentos como las clorofilas, lo cual se observa también en cultivos envejecidos de criptofíceas.

Viaje y transformación de los cloroplastos recién robados (rojos) a Mesodinium en D. caudata, durante las primeras 24 horas después de su ingestión. Fuente: Kim y col. (2012)

Pues bien, a mayor intensidad de luz mayor daño y más rápido se produce ese cambio de color. Siguiendo dicho razonamiento Kim y col. obtuvieron células verdes de D. caudata subiéndoles la luz de 10 a 160 μE, sin presas que echarse a la boca.

Luego les añadieron Mesodinium y comprobaron el desplazamiento de los nuevos cloroplastos rojos, que se mezclaban con los viejos verdes (no es un chiste) para organizarse en las estructuras estrelladas descritas por García-Cuetos y col. (2010).

Con el tiempo, después de ingerir Mesodinium, D. caudata recobraba su color rojo y apenas quedaban unos pocos cloroplastos verdes. Et voilà! Dinophysis posee cleptoplastos temporales.

2>>Los cleptoplastos de Dinophysis se dividen y regulan sus pigmentos

Hasta hace nada se creía que los cleptoplastos se diluían en la progenie como consecuencia de la división de Dinophysis. Pero en 2017, Rustherholz y col. demostraron que Dinophysis también divide los cleptoplastos, algo inédito en un protista sin núcleos de la presa fotosintética.

En este trabajo se utilizó microscopía confocal que permite reconstruir imágenes 3D de fluorescencia en alta resolución. Sus resultados indicaron que D. acuminata y D. acuta dividen los cleptoplastos y que el descenso del número (y volumen) de los mismos no se explica por divisiones sucesivas sino por el tiempo que transcurre sin presa.

Imagen confocal de autofluorescencia de Dinophysis acuminata, en posición lateral (B) y dorsal (C). Lo mismo para D. acuta (E y F). Fuente: Rustherholz y col. (2017)

La degradación de los cleptoplastos es más rápida en luz alta, tal y como habían señalado Kim y col (2012). Y en este sentido, otro trabajo reciente (Hansen y col. 2016), concluyó que Dinophysis acuta puede fotoregular pero no fotoaclimatar sus cleptoplastos. ¿Qué significa esto?

Fotoregulación implica sintetizar pigmentos fotosintéticos y fotoprotectores, mientras que fotoaclimatación supone además adaptar la actividad fotosintética a la luz que reciben los cloroplastos.

Yo pensaba que ambas cosas son inseparables en el funcionamiento de los cloroplastos, pero según dichos autores el último mecanismo no existiría en Dinophysis. Nada parece normal en ellas.

Hansen y col. mantuvieron a D. acuta en ayunas a dos luces distintas (15 y 100 μE). En luz baja se dividieron 2.3 veces en un mes pero mantuvieron la misma concentración celular de clorofila a demostrando la síntesis de pigmentos mientras que en luz alta su contenido de clorofila a se redujo a 1/3 del valor inicial.

Hansen y col. también observaron diferencias en la concentración y proporción de pigmentos fotosintéticos accesorios. Pero no encontraron evidencias de fotoaclimatación ya que los parámetros fotosintéticos obtenidos con fluorescencia PAM (Pulse Amplitude Modulated) fueron similares bajo ambas luces.

Eso sí, las células sufrían una caída dramática en la absorción de carbono inorgánico después de 10 días en luz alta y el funcionamiento de los cleptoplastos sólo se explicaría gracias a sustancias de reserva (lípidos y almidón).

¿Por qué son temporales los cloroplastos de Dinophysis?

Myrionecta rubra=Mesodinium rubrum. Geminigera no es la presa habitual sino Teleaulax. Fuente: Wisecaver & Hackett (2010).

Muchos dinoflagelados poseen cloroplastos permanentes robados a otros grupos algales: Durinskia, Galeidinium, Karenia, Karlodinium, KryptoperidiniumLepidodinium, etc.

Como hemos visto, Dinophysis mantiene un cierto control sobre sus cleptoplastos pero su naturaleza es temporal. El motivo es que Dinophysis no tiene las instrucciones genéticas para controlarlos indefinidamente y debe reponerlos a través de la alimentación a medida que se degradan y pierden actividad.

El ancestro común de los dinoflagelados (Dinophysis incluidas) poseía cloroplastos con peridinina, un pigmento característico de la mayoría de dinoflagelados fotosintéticos.

La información genética de esos cloroplastos es mínima en comparación a otros grupos algales. Su genoma está fragmentado en minicírculos y muchos de los genes que codifican sus proteínas y controlan el funcionamiento de los plástidos se transfirieron al núcleo.

Por el contrario, en Dinophysis sólo se han detectado cinco proteínas plastidales codificadas en el núcleo. Una de ellas procede de criptofíceas, dos de dinoflagelados con peridinina, y las dos restantes de haptofitas/dinoflagelados con fucoxantinas (Wisecaver & Hackett 2010). Dinophysis transformará sus cleptoplastos a cloroplastos permanentes si ello le supone una ventaja adaptativa, siguiendo el camino que ya recorrieron otros dinoflagelados. De ahí el interés de su estudio para desvelar los secretos evolutivos de la endosimbiosis.

3>>>Dinophysis no vive sólo de Mesodinium

Protoperidinium y Dinophysis acuta. La bolita es lo que resta de un Mesodinium, vacío y sujeto por el pedúnculo alimentario. Muestra natural de la estación P2 (Ría de Pontevedra). Autor: F. Rodríguez

Bien, ya sabemos que Dinophysis son mixótrofas y poseen cleptoplastos de Mesodinium. Al resto del ciliado se lo comen enterito, sin tenedor ni cuchillo: lo sorben como a un coco peludo, perforándolo y metiéndole una pajita (bueno, un pedúnculo alimentario para ser exactos).

Nadie ha descubierto otra forma de cultivar Dinophysis pero ¿no les cuesta creer que sobrevivan en el mar con esa dieta?

La confirmación de esta sospecha llegó en 2012 por parte del mismo grupo de investigadores que descubrieron cómo cultivar Dinophysis.

El ciliado Strombidium oculatum (A), alimentándose de macroalgas verdes del género Enteromorpha (B,C). Fuente: McManus (2004).

En un estudio sobre muestras naturales (Kim y col. 2012), analizaron los cleptoplastos de Dinophysis e identificaron secuencias genéticas no sólo de criptofíceas, sino también de otros grupos algales como rafidofíceas (Heterosigma akashiwo) y clorofíceas (Pyramimonas).

Esos cloroplastos alternativos deben proceder de otros ciliados diferentes a Mesodinium como Laboea, Strombidium, etc, que se alimentan de otros grupos algales y retienen sus cloroplastos.

De momento seguiremos cultivando Dinophysis al estilo coreano, como nos enseñaron Park y col. (2006). Espero que algún día pueda explicarles otra manera de mantenerlas, quizás al estilo gallego. Mientras tanto, en la próxima entrada, les contaré más novedades sobre Dinophysis.

Referencias

-García-Cuetos L. & col. The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not kleptochloroplasts. HarmfulAlgae 9:25-38 (2010).
-Hansen P.J. & col. Photoregulation in a kleptochloroplastidic dinoflagellate Dinophysis acuta. Front. Microbiol. 7:1-11 (2016).
-Kim M. y col. Dinophysis caudata (Dinophyceae) sequesters and retains plastids from the mixotrophic ciliate prey Mesodinium rubrum. J. Phycol. 48:569-579 (2012).
-McManus G.B. Marine planktonic ciliates that prey on macroalgae and enslave their chloroplasts. Limnol. Oceanogr. 49:308–313 (2004).
-Park M.G. & col. First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat. Microb. Ecol. 45:101–106 (2006).
-Rusterholz P.M. & col. Evolutionary transition towards permanent chloroplasts? Division of kleptochloroplasts in
starved cells of two species of Dinophysis (Dinophyceae). PLoSONE 12(5):e0177512 (2017).
-Wisecaver J.H. & Hackett J.D. Transcriptome analysis reveals nuclear-encoded proteins for the maintenance of temporary plastids in the dinoflagellate Dinophysis acuminata. BMC Genomics 11:366 (2010).

 

Las algas de las cavernas

El 7 de enero en la emisión de Efervesciencia «Luz contra o verdello«, conversaban con investigadores de la USC y del CICA (Patricia Sanmartín, Javier Cancelo, Xusto Arines y Rafael Carballeira), acerca de «Iluminación artificial contra os colonizadores da pedra«. Efervesciencia siempre es interesante pero en este caso todavía más, al menos para mí, porque se trataba de microalgas, luces y pigmentos.

Manuel Vicente y César Goldi durante la entrevista con Patricia Sanmartín en Efervesciencia. El lema de este imprescindible programa de divulgación es «doses de ciencia sen contraindicacións». En 2017 cumplió 10 años de emisión en la Radio Galega. Fuente: CRTVG

Todo surge del proyecto Light4heritage. Sus objetivos son desarrollar estrategias de iluminación urbana para controlar el crecimiento y el color de los microorganismos que colonizan las superficies de edificios emblemáticos.

Dichos microorganismos, heterótrofos y autótrofos, proliferan formando biopelículas (aunque solemos emplear el anglosajón biofilm).

Se trata de un ecosistema de bacterias, hongos, cianobacterias y microalgas que interactúan y colonizan las superficies aprovechando condiciones favorables y los nutrientes facilitados por esa comunidad.

Máximos de absorción de pigmentos: clorofilas, carotenoides y ficobiliproteínas (ficocianina y ficoeritrina). Fuente: euita.upv.es

El componente autótrofo de las biopelículas, cianobacterias y microalgas, posee combinaciones de pigmentos que absorben de forma diferente las longitudes de onda de radiación visible como hemos comentado en otras entradas del blog [1, 2, 3].

Las cianobacterias en particular utilizan pigmentos hidrosolubles, ficobiliproteínas, que absorben longitudes de onda intermedias (típicamente entre el verde y naranja: 500-600 nm) y amplían la «ventana» de absorción de clorofilas y carotenoides.

La consecuencia directa es que la intensidad y calidad de la luz modifican las proporciones de dichos pigmentos y la actividad fotosintética de cianobacterias y microalgas, afectándoles a ambas de forma distinta.

Torres Hedjuk. Fuente: hiveminer.com

Si viajan ustedes de noche por la autopista AP-9, a la altura de Santiago de Compostela verán las torres Hedjuk en lo alto del Gaiás, iluminadas por LEDs de colores. Pues bien: esas luces son fotosinteticamente activas.

En un estudio reciente, Sanmartín y col. (2017) examinaron el efecto de distintas intensidades y calidades (colores) de luz sobre el crecimiento y otros parámetros en una suspensión de microalgas (clorofíceas del género Bracteacoccus) y cianobacterias (Chroococcus sp., Isocystis sp. y Pseudocapsa dubia), aisladas de una fachada de granito en Santiago de Compostela.

Sus resultados mostraron que el filtro azul inhibía el crecimiento de esa mezcla de cultivos, lo cual me pareció sorprendente por inesperado, ya que coincide con el máximo de absorción de la clorofila a.

Cidade da Cultura de Galicia (Santiago de Compostela), diseñada por Peter Eisenman. El verdín coloniza algunas fachadas y las torres Hejduk (a la derecha). Autor: F. Rodríguez

Los filtros verdes y rojos modificaban el color de la suspensión hacia el rojo y el verde respectivamente, lo cual encaja con la adaptación cromática de las cianobacterias.

Así pues, conociendo mejor los efectos de la iluminación urbana se podrían diseñar estrategias que controlen el desarrollo y el color de las biopelículas, tales como las de las torres Hedjuk y otros lugares de La Ciudad de la Cultura de Galicia mencionados en Efervesciencia.

Pero en esta entrada no quería hablarles de edificios sino de los colonizadores de piedras en cavidades naturales subterráneas. Es decir: en cuevas.

Y en concreto cuevas muy famosas como las de Lascaux (Périgord, suroeste de Francia) y Altamira (Cantabria, norte de España), que comparten varias características y una agridulce historia reciente.

Finding Altamira (H. Hudson, 2016). Fuente: Teaser-Trailer

Las cuevas de Altamira y Lascaux, descubiertas en 1879 y 1940 albergan muestras de arte rupestre del Paleolítico superior datadas aprox. entre 35.000-15.000 A.C. para el yacimiento cántabro y 22.000-15.000 A.C. para el de Périgord.

El descubrimiento de Altamira fue polémico y no se aceptó su autenticidad hasta comienzos del s.XX con el hallazgo de pinturas similares en cuevas de Francia, tal como narra la reciente película «Finding Altamira«. Hoy en día el arte de ambas cuevas goza de reconocimiento universal y están inscritas en la lista del Patrimonio Mundial de la UNESCO.

Altamira y Lascaux tienen poco más de 200 metros de longitud y la afluencia de cientos de miles de visitantes anuales durante su explotación turística a mediados del siglo XX puso en peligro las pinturas, provocando cierres temporales de las cuevas que luego se hicieron definitivos (con matices, como veremos).

En ambos enclaves los daños fueron ocasionados por el crecimiento de biopelículas debido a los cambios en las condiciones ambientales por la entrada de visitantes: luz, temperatura, humedad, etc, además de intervenciones poco afortunadas.

Lascaux

Sala de los Toros (Lascaux). Fuente: elretohistorico.com

La cueva de Lascaux se clausuró al público definitivamente en 1963, solo 16 años después de su apertura, debido principalmente a «la enfermedad verde» de Lascaux (Lefèvre & Laporte 1969).

Bracteacoccus sp. (Chlorophyceae). Fuente: Orial y col. (2011)

Dicha enfermedad consistió en una proliferación de colonias de microalgas verdes (Bracteacoccus minor), gracias al aumento del dióxido de carbono y humedad debidos a los visitantes y el sistema de iluminación para contemplar las pinturas de la cueva. A estas colonias de microalgas se las conoce como lampenflora porque crecen gracias a las lámparas !!

Para eliminar las algas se empleó una solución de ácido fórmico (1/200), incoloro y respetuoso con las pinturas, que terminó con las clorofíceas invasoras en cuatro meses. Este tratamiento continuó aplicándose varias décadas y hasta el día de hoy las algas verdes no han vuelto a Lascaux.

Las algas verdes y hongos («la enfermedad blanca») llevaron al cierre de Lascaux en 1963 pero décadas después los problemas volvieron a crecer.

En 2001 se extendió rápidamente una contaminación «blanca» en el suelo y la base de las paredes por el hongo Fusarium solani. La razón: la instalación de un equipo demasiado potente e inadecuado para controlar las condiciones climáticas de la cueva que alteró su equilibrio ambiental.

El tratamiento en este caso fue un fungicida, que no funcionó. Y luego se aplicó cal viva sobre el suelo, que elevó brutalmente el pH y solucionó en parte la contaminación secando los micelios del hongo.

Micelios blancos del hongo Fusarium solani y su imagen al microscopio (x400). Fuente: Orial y col. (2011)

Pero las condiciones ambientales de la cueva (el biotopo), se alteró y surgieron luego conjuntos de mucus bacterianos (Pseudomonas fluorescens) y colonias oscuras del hongo Gliomastix murorum en la sala de los Toros.

A partir de 2004 se suspendieron los tratamientos químicos en favor de métodos mecánicos de limpieza.

En 2007 ocurrió un nuevo episodio de contaminación por colonias negras de hongos como Gliocladium sp. y Ulocladium sp. que provocó la puesta en marcha otra vez de tratamientos químicos y mecánicos para su control y eliminación. Hoy en día la contaminación se ha reducido aunque no se ha erradicado por completo.

Pero nada de esto empaña el formidable éxito turístico de Lascaux gracias a las réplicas de la cueva. En 1983 se inauguró Lascaux II, una réplica parcial que incluye la sala de los Toros; en 2012 Lascaux III, una réplica itinerante, y en 2016 Lascaux IV-CIAP (Centre International de l’Art Pariétal), con una réplica casi integral.

Altamira

Sala de los polícromos (Altamira). Fuente: Historia de España.

La cueva de Altamira se abrió al público en 1917. A finales de los 60′ se realizaron obras para facilitar su acceso y se intervino en el interior de la cueva para crear un camino más ancho que la recorría en su totalidad. En los años 70′ se alcanzaron las 170.000 visitas anuales y ante la amenaza que ello suponía para la conservación de las pinturas se cerró al público en 1978. En 1982 se volvió a reabrir la cueva con un tope de 8.000 visitantes/año.

En 2002 se detectaron manchas verdes (colonias de microalgas), en la sala de los polícromos, que provocaron un nuevo cierre de la cueva. En una muestra de una suspensión de algas de Altamira se identificó a las clorofíceas como el grupo dominante incluyendo a los géneros Chlorella, Stichococcus y Trebouxia (Láiz y col. 2006).

En 2012, después de un programa de investigación para evaluar la conservación y régimen de acceso a la cueva, el Patronato del Museo Nacional y Centro de Investigación de Altamira decidió reabrir la cueva para visitas de cinco personas un día a la semana (250 personas/año). Dichas visitas duran 37 minutos, 8 de ellos bajo el techo de la sala de polícromos.

Colonias amarillas, más abundantes en la zona de entrada de la cueva de Altamira. Fuente: Sánchez-Moral y col. (2014).

Además de las manchas verdes, en Altamira se encuentran otras colonias clasificadas según su color en amarillas, grises y blancas, así como unos depósitos llamados «moonmilk«. En estos últimos aparecen cianobacterias del género Synechocystis. 

La distribución de dichas colonias es diferente a lo largo de la cueva reflejando la tolerancia ambiental de los microorganismos.

En Altamira el mayor peligro no son algas ni bacterias, sino los hongos, aunque parecen mantenidos a raya por las bacterias de la cueva dado que muchas son productoras de sustancias antifúngicas. Preservar el equilibrio biológico de Altamira es fundamental ya que los tratamientos biocidas, al eliminar a las bacterias, podrían favorecer el desarrollo posterior de los hongos.

Todo ello se describe en detalle en un estudio integral del estado de conservación de la cueva de Altamira (Sánchez-Moral y col., ed. 2014), en base al cual se determinó el régimen actual de visitas. En dicho trabajo el presente y futuro de Altamira quedan retratados en frases como estas:

La cueva es altamente receptiva a las contaminaciones microbianas y cualquier introducción de carbono orgánico, de forma accidental, puede desencadenar una crisis semejante a la de la cueva de Lascaux […] Altamira es una cueva muy frágil hablando en términos de ecología microbiana […]

Las comunidades metabólicamente activas en Altamira representan menos del 60 %. […] El resto de comunidades, metabólicamente inactivas, son susceptibles de activarse en respuesta a determinados cambios microambientales en su entorno que podrían provocar el crecimiento de microorganismos no deseados o difíciles de combatir (caso de Fusarium solani en la cueva de Lascaux. […] Así pues, la entrada de visitantes produce modificaciones en el ecotono actual de Altamira ampliando su área hacia el interior.

Neocueva de Altamira. Fuente: Cantabriarural

Al igual que en Lascaux, en Altamira también existe un museo y una réplica de la cueva.

Inaugurada en 2001, la Neocueva de Altamira reproduce su arquitectura natural en el tiempo durante el que fue habitada y pintada (más de 20.000 años), antes de que la modificaran los derrumbes naturales y las intervenciones artificiales del siglo XX.

Referencias:

-Fatás P., Lasheras J.A. La cueva de Altamira y su museo. Cuadernos de arte rupestre 7: 25-35 (2014).
-Geneste J.M. Les grandes étapes de la conservation de la grotte de Lascaux 1940-2008. 10 pp. Symposium Lascaux 26-27 février 2009.
-Láiz L. y col. Microbial assessment of the biological colonization on roofing tiles. En: Fort R. y col. (eds.): Heritage, Weathering and Conservation, pp. 349-353. Londres: Taylor & Francis (2006).
-Lefèvre M. & Laporte G. S. The ‘maladie verte’ of Lascaux. Diagnosis and treatment, Studies in speleology, vol 2, part 1:35-44 (1969).
-Orial G. y col. Gestion des activités biologiques à Lascaux: identification des microorganismes, contrôles, traitements, pp. 219-252. En: Lascaux et la conservation en milieu souterrain = Lascaux and preservation issues in subterranean environments : symposium (Paris; 2009). Paris: Maison des sciences de l’homme, 360 pp. (2011).
-Sánchez-Moral y col. Estudio integral del estado de conservación de la cueva de Altamira y su arte paleolítico (2007 – 2009). Perspectivas futuras de conservación. Monografías. Nº 24 Museo Nacional y Centro de Investigación de Altamira, 405 pp. Edición 2014.
-Sanmartín P. y col. Controlling growth and colour of phototrophs by using simple and inexpensive coloured lighting: A preliminary study in the Light4Heritage project towards future strategies for outdoor illumination. Int. Biodeterior. Biodegrad. 122:107-115 (2017).

 

Música y humor por un océano mejor

Hoy toca entrada ligera con cuatro historias sobre música, vídeos y humor relacionadas con el fitoplancton, de la mano de NATURE, unos surfistas, el ICM y la BBC.

1>>> Nos sobran razones para estar agradecidos al plancton.

A las bacterias, al fitoplancton, al zooplancton: a todos ellos muchas gracias. Y las cinco razones por las que según la revista NATURE deberíamos darle gracias al plancton se resumirían en:

  1. El aire que respiramos.

  2. Estar calentitos por la noche y llenar el depósito del coche.

  3. Las construcciones que hemos realizado gracias a él.

  4. Los alimentos que pone en nuestra mesa.

  5. Nuestra propia existencia.

Si quieren averiguar qué argumentos esconden esas 5 razones aquí tienen el vídeo de NATURE con una narración planctónica la mar de simpática.

2>>> Citizens for clean water (C4CW) es una asociación sin ánimo de lucro con sede en Stuart (Florida, EEUU). La crearon un grupo de surfistas en 2013, después de una contaminación bacteriana en aguas continentales y de las proliferaciones de cianobacterias que afectaron en años posteriores a las costas de Florida. ¿Se acuerdan? hablamos de ellas en Cianobacterias en la Costa del Tesoro.

Protesta organizada por C4CW en julio 2016 (Stuart, Florida) a raíz de la proliferación de cianobacterias del lago Okeechobee y su descarga en aguas continentales y costeras. Fuente: MyPalmBeachPost.com

Pues bien. C4CW organiza protestas con el objetivo de que las autoridades mejoren la calidad del agua, y actividades educativas para promover un estilo de vida más respetuoso con el medio acuático. Y no sólo eso. También compusieron una canción con todo el cachondeo del mundo: «The blue-green algae song«, para denunciar las proliferaciones de cianobacterias del lago Okeechobee. Es tan tronchante que el mensaje pierde fuerza pero lo perdido en seriedad lo gana en viralidad, eso seguro !!

Para que la puedan cantar a gusto les dejo la letra. Buena onda y déjense llevar por nuestros amigos surfistas:

…If manatees could talk they’d say hail no, hail no, hail no, hail no/ they would say hail no to the blue-green algae that’s making plants not grow/ the fishermen are pissed/ and so are the squids, the squids, the squids, the squids/ because the ocean once was beautiful and now it looks like shit/ we don’t want to swim/ in a body of water full of toxins/ so go away/ blue-green algae you can’t stay/ listen to my words/ the fish and the birds will they smell like turds?/ and it breaks our heart, our hearts!/ that the ocean smells like farts/ ooh!, surfers are crying, animals are dying/ the government is lying and the algae is multiplying/ blue-green algae get the hell out of here

3>>> Investigadores del Institut de Ciències del Mar (CSIC) de Barcelona, en colaboración con la plataforma La Ciència al teu Món, diseñaron Sea Dance.

Se trata de una instalación interactiva que ya comenté en ICHA17 (Brasil).

El ecosistema marino de Sea Dance. Fuente: ICM-Divulga.

El juego consiste en ir seleccionando distintos componentes del plancton y ponerse a bailar para que un detector de movimiento aumente su presencia en el ecosistema.

Si alguno de los componentes del plancton aumenta o disminuye en exceso tienes que decidir qué organismos debes introducir o eliminar para que el ecosistema funcione como es debido.

Con ello entendemos las relaciones entre los organismos del ecosistema planctónico, para conseguir que se desarrollen de manera controlada hasta alcanzar un estado de equilibrio. Y entonces ganas la partida!

Esther Garcés (ICM-CSIC) con el Sea Dance en el MardeMares. Fuente: twitter (@FestMardeMares)

Sea Dance está pensado para todos los públicos, especialmente los más jóvenes, que conocerán así los organismos que forman el ecosistema marino mientras se divierten al ritmo de la música.

Al comienzo el ritmo no tiene ton ni son, pero a medida que equilibras el ecosistema surge la armonía también en la música.

El vídeo promocional lo pueden disfrutar en el siguiente enlace.

Sea Dance está disponible para su instalación en eventos de divulgación científica. El más reciente, que yo sepa, fue el Festival MardeMares en el Aquarium Finisterrae (octubre 2017, A Coruña). Para más información pueden consultar la web ICM-Divulga.

4>>> Para terminar, lo más impactante. La nueva serie documental de la BBC dedicada a los océanos: Blue Planet II.

Para su banda sonora han juntado a dos de mis artistas favoritos que pertenecen además a mundos musicales completamente distintos: Hans Zimmer, compositor alemán de gigantescas bandas sonoras como «Piratas del Caribe», «Inception» o «Interstellar», y el grupo británico Radiohead.

A partir de la canción «Bloom» de Radiohead han elaborado «(Ocean) bloom«, que acompaña al tráiler de Blue Planet II con el que despido esta entrada, narrado por la voz de la naturaleza: Sir David Attenborough.

La primera vez que lo vi me dejó boquiabierto, ojiplático como diría una amiga mía, y espero que a ustedes les produzca la misma emoción !!

 

Los riesgos del marisco furtivo

Toxina. 1. f. Biol. Veneno producido por organismos vivos.

Furtivo. 1. adj. Que se hace a escondidas. 2. adj. Dicho de una persona: Que caza, pesca o hace leña en finca ajena, a hurto de su dueño.

Diccionario de la lengua española (dle.rae.es)

Imagínense sentados a la mesa y que les sirven mejillones al vapor, vieiras al horno, almejas a la marinera y navajas a la plancha, acompañados de un Ribeiro o un Albariño bien fresquito. Luego les dicen que es marisco furtivo. ¿Saben a qué riesgos se exponen? Pues se lo voy a contar.

Cultivos de mejillón en bateas (Bueu, Ría de Pontevedra). Autor: F. Rodríguez

Hace mucho que quería escribir sobre los riesgos de consumir marisco furtivo, ya sea recogido en el medio natural por el consumidor o comprado. Me referiré a Galicia, porque allí es donde vivo y tenemos bastante marisco, toxinas y furtivismo.

Galicia es la comunidad autónoma que consume más pescado fresco y marisco por delante de Asturias, Castilla y León y País Vasco, según datos de MERCASA (Martín Cerdeño, 2017). El cultivo de mejillón gallego (Mytilus galloprovincialis) en batea es el más productivo de España y de los principales a nivel europeo con unas 250.000 Tm/año.

Los recursos del mar son muy importantes para la región. Son muchos empleos y familias las que dependen directa o indirectamente de la pesca y la acuicultura. No me gusta la expresión pero el mar está en el ADN de los gallegos.

Sin embargo, existe al mismo tiempo un desconocimiento general sobre las biotoxinas, de cómo llegan estas a los alimentos y de cómo pueden afectar a la salud. A ello contribuyen la escasa divulgación por parte de autoridades y medios de comunicación. Las noticias suelen limitarse a anunciar la presencia de la marea roja y señalar que hay biotoxinas en el agua que impiden la extracción del marisco. Por supuesto que también se publican artículos con más detalles acerca de los episodios tóxicos en las rías y los riesgos de las biotoxinas, pero son los menos.

Algunas especies de microalgas producen potentes venenos o toxinas. Cuando estas microalgas son filtradas por los mejillones y otros bivalvos, las toxinas se acumulan en sus tejidos y se transmiten a niveles superiores de la red alimentaria y al hombre. Las toxinas son tan potentes, que no se requieren elevadas concentraciones de microalgas, ni formación de mareas rojas, para que los bivalvos se conviertan en no aptos para el consumo humano. A estas proliferaciones, frecuentemente no acompañadas de producción de elevadas biomasas, las denominaremos Episodios de Algas Tóxicas.

(Reguera y col. 2009)

Proyecto de divulgación de Bioimaxe en colaboración con Ardora Formación y Servicios, financiado por FECYT. El documental fue reconocido con una mención honorífica en los Premios Prismas de Divulgación de la Casa de las Ciencias de A Coruña, y premiado con la Barandilla de Bronce en el Ciclo Internacional de Cine Submarino de Donostia-San Sebastián, ambos en 2017.

Para contribuir a la divulgación asesoramos desde el IEO de Vigo sobre los contenidos del documental «Mareas Vermellas» y la web asociada, explicando p. ej. las diferencias entre mareas rojas y episodios tóxicos. En él participamos instituciones de investigación, el control de biotoxinas marinas, el Consello Regulador de la DOP «Mexillón de Galicia» y el sector extractivo.

Les animo a verlo online en mareasvermellas o en youtube.

Las biotoxinas del marisco en Galicia las analiza semanalmente el INTECMAR (Vilaxoán, Xunta de Galicia) y el producto que luego se distribuye a los establecimientos autorizados lleva etiquetas que lo identifican como apto para el consumo. Así lo exigen y detallan las normativas europeas de higiene de los alimentos de origen animal (CE Nº853/2004 y 854/2004).

Dichas normativas recogen, además de los niveles máximos permitidos de biotoxinas, la clasificación de zonas de explotación según el grado de contaminación fecal del agua. En este caso se establecen cuatro clases (A, B, C, D). Sólo se puede comercializar el marisco A-C, siendo A la máxima calidad que permite su venta en fresco directa a través de centros de expedición de clase A donde se acondiciona, limpia, calibra, envasa y embala.

Mientras, el marisco de clase B y C posee niveles de contaminación fecal que impiden su venta directa y debe pasar por centros de depuración o reinstalación en aguas limpias durante periodos prolongados antes de su comercialización.

Los resultados de los análisis de fitoplancton tóxico, condiciones oceanográficas, biotoxinas, así como los cierres y aperturas de explotación se publican semanalmente en la web del INTECMAR.

Y la clasificación de las zonas de producción se revisa como mínimo cada trimestre mediante análisis microbiológicos y químicos del agua. Los cambios en dicha clasificación se publican en el Boletín Oficial de la Xunta de Galicia (DOG).

Ninguno de estos controles legales ni garantías sanitarias son aplicables al marisco furtivo.

Que nadie se haya muerto en Galicia por intoxicarse o que a usted nunca le haya pasado nada no sirve como garantía. Tampoco que nos juren que su origen y calidad son idóneos para el consumo. O lleva las etiquetas correspondientes que así lo demuestran o usted se fía y luego ya veremos.

Porque lo cierto es que sí ha habido intoxicaciones, sigue habiéndolas y las habrá si nos saltamos los controles sanitarios. Porque los únicos casos de intoxicaciones que conozco han estado asociados siempre a la ausencia de controles de biotoxinas o al marisco recogido o adquirido fuera de los cauces legales. Esto demuestra que nuestro sistema de control de biotoxinas funciona y es seguro.

Dentro de lo que cabe somos afortunados porque en Galicia las toxinas que predominan son las lipofílicas, causantes del síndrome diarreico (DSP), que puestos a elegir no son las peores del «catálogo». No se trata de alarmar sino de informar para prevenir.

En contra de lo que a veces piensa la gente, las ficotoxinas de los bivalvos no se eliminan con la depuración (que simplemente elimina bacterias y virus del aparato digestivo de los bivalvos), ni con la cocción. Es importante, pues, que los consumidores compren productos controlados, en establecimientos autorizados, con las correspondientes etiquetas en las mallas de envasado que así lo atestigüen.

(Reguera y col. 2009)

¿Qué organismos marinos pueden intoxicarnos? 

Tanto el pescado como crustáceos y moluscos pueden ser tóxicos dependiendo de la región del mundo que se trate. En el caso de Galicia el riesgo está en moluscos bivalvos filtradores como mejillones, almejas, berberechos, navajas, ostras, vieiras y zamburiñas. Se libran de esta lista otros organismos filtradores como los percebes, al menos por el momento.

¿Qué biotoxinas marinas existen en Galicia?

Las principales biotoxinas en Galicia son lipofílicas (ácido okadaico y dinofisistoxinas (síndrome diarreico, DSP); pectenotoxinas y yessotoxinas), amnésicas (ácido domoico: síndrome amnésico, ASP) y paralizantes (saxitoxinas: síndrome paralizante, PSP). Se trata de potentes neurotoxinas pero sus mecanismos de acción, síntomas de intoxicación y efectos sobre el organismo son diferentes. En el caso de las pectenotoxinas y yessotoxinas no está demostrada su toxicidad en humanos y son toxinas de acción rápida en ratones (Alfonso y col. 2014).

¿Cómo de potentes son las biotoxinas del marisco?

Pez globo (fugu). Fuente: animalgourmet.com

Lo suficiente para provocar la muerte en casos de intoxicaciones graves con las amnésicas y sobre todo las paralizantes. Veamos. Para calcular la toxicidad aguda de un compuesto se suele utilizar el valor LD50, que es la cantidad de un material determinado que provoca la muerte del 50% de un grupo de animales de prueba.

Para poner en contexto la toxicidad de las biotoxinas del marisco usaré la tetrodotoxina del pez globo, producida por bacterias endosimbiontes. En Japón se le conoce como fugu y la preparación de este manjar está restringida a chefs entrenados y con licencia para servir el plato porque si lo hacen mal te puedes morir.

Pues bien, según un listado de la Universidad Autónoma de Barcelona, los LD50 de la tetrodotoxina y las toxinas paralizantes (saxitoxinas) son iguales: 8.000 ng/kg. Las saxitoxinas son 1000 más tóxicas que el gas sarín y están clasificadas como armas químicas por la CWC (Chemical Weapons Convention).

Mientras, el LD50 de las diarreicas (ácido okadaico) es 200.000 ng/kg (25 veces menos potentes) y 3,6 mg/kg para las amnésicas (ácido domoico), 4.500 veces menos. Sin embargo, no por ello son menos peligrosas. Primero porque los valores de LD50 están calculados para ratones y son desconocidos en humanos. Y segundo porque el LD50 señala toxicidad aguda pero debemos considerar también los efectos subletales.

Por ejemplo, en el caso del ácido okadaico y dinofisistoxina-1 no hay registros de muertes en personas pero varios estudios en animales han demostrado su potencial genotóxico, promotor de tumores (EFSA, 2008).

La FAO publicó en 2005 un informe detallado sobre biotoxinas marinas disponible en fao.org. Comentarlo me llevaría varias entradas y no quiero perder el hilo de esta historia pero entre sus conclusiones destaco lo siguiente:

El consumo de diversos mariscos y pescados ocasiona mundialmente un número creciente de intoxicaciones en los seres humanos […] Por lo general sus efectos se observan como intoxicaciones agudas. Apenas se conocen los efectos resultantes sobre la salud de exposiciones episódicas y de la exposición crónica a niveles bajos de toxinas de algas. Estos últimos efectos pueden pasar sin ser informados por el o los individuos afectados o ser objeto de diagnósticos médicos erróneos.

(FAO, 2005)

¿Qué intoxicaciones han sucedido en Galicia o por culpa del marisco gallego?

Gymnodinium catenatum. Autor: S. Fraga

Les pondré varios ejemplos que conozco a través de la prensa, artículos científicos y de divulgación, pero que seguramente no han sido los únicos.

El episodio más conocido fue el de 1976 al cual dediqué dos entradas [1 y 2], debido a toxinas paralizantes (saxitoxinas) en mejillones de las Rías Baixas, por culpa del dinoflagelado Gymnodinium catenatum.

Un total de 176 personas necesitaron atención hospitalaria en España y varios países europeos. No hubo víctimas mortales pero provocó una grave crisis para el sector mejillonero gallego y puso en marcha el control de biotoxinas y fitoplancton tóxico de nuestra región (Reguera y col. 2009).

El síndrome PSP, del cual he tratado en este blog en varias ocasiones, puede ocasionar la muerte en los casos de intoxicación más graves, tanto en humanos como fauna marina. Los síntomas de intoxicación por saxitoxinas pueden durar varios días e incluyen debilidad muscular, entumecimiento, hormigueo, picazón, pérdida de sensibilidad táctil, ceguera temporal, sensación de liviandad (como si flotara uno en el aire). En casos extremos, tras 2-24 horas, la parálisis muscular se extiende y agrava provocando dificultades respiratorias severas y la muerte.

Dinophysis acuminata. Autor: F. Rodríguez

En 1981 sucedió un nuevo episodio de intoxicación por mejillón gallego de origen desconocido. Afectó a unas 5000 personas en la costa levantina española y los síntomas eran como de gastroenteritis (Reguera y col. 2009).

Tras descartar una contaminación bacteriana se asumió, por analogía con brotes en otros países como Francia, Holanda y Japón, que se trataba de toxinas lipofílicas (ácido okadaico). Estos compuestos son producidos por dinoflagelados del género Dinophysis.

Se piensa que los síntomas de malestar gastrointestinal asociados a bacterias en el pasado han sido a menudo debidos a estas toxinas. En 1995 sucedieron tres nuevos brotes de DSP con 61 afectados por consumo directo de mejillón de roca y de batea. Los síntomas típicos del síndrome diarreico son náuseas, vómitos, diarrea, dolor abdominal, que suelen aparecer entre 30 minutos y pocas horas después del consumo de marisco. A veces se observa fiebre, escalofríos y dolor de cabeza. Las intoxicaciones más graves requieren de hospitalización pero los síntomas remiten en 2-3 días.

Y ahora vamos con otros casos más recientes.

Agosto de 2014. Dos personas fueron atendidas en el hospital do Barbanza (Ribeira, A Coruña), con síntomas de intoxicación (confusión, pérdida de memoria) por toxinas amnésicas (ácido domoico, síndrome ASP).

Luego confesaron haber comprado mejillones directamente a un bateeiro en la Ría de Arousa (Faro de Vigo, 07/VIII/2014). Los congelaron por un tiempo y luego se cocinaron una paella.

Pseudo-nitzschia sp. Autor: F. Rodríguez

Aquellos mejillones se habían cosechado durante un episodio de ASP asociado a diatomeas del género Pseudo-nitzschia. En Californintoxication les hablé de las intoxicaciones ASP, que pueden resultar letales para las personas y la fauna marina.

Los síntomas característicos son gastrointestinales (vómitos, diarrea, dolor abdominal), y/o neurológicos (confusión, pérdida de memoria). En casos graves se observan convulsiones, coma y muerte tras 24-48 horas.

Julio de 2015. Varios miembros de al menos seis familias ingresaron en el hospital de Cee con síntomas de vómitos, diarrea, mareos y malestar general. El motivo fueron unos berberechos que recogieron en la playa de Carnota. Al mismo tiempo se registraron otros casos de intoxicaciones en Fisterra, Caldebarcos (Carnota) y O Ézaro (Dumbría). El motivo: niveles de ácido okadaico (Dinophysis, DSP) seis veces superiores al máximo legal. Así lo describía un vecino de Cee en La Voz de Galicia (08/VII/2015):

«A miña filla estao a pasar mal. Leveina a urxencias e o médico, ademais de darlle tratamento, díxolle que non podía comer nada ata hoxe [por ayer] á noite», cuenta este padre de una familia a la que el marisco tóxico le ha afectado de manera muy irregular. «Foron uns berberechos que apañaron o sábado na praia de Carnota. Á filla fixéronlle dano, a súa nai tamén e, en cambio, aos meus pais, non. Eu tíñaos para comer con arroz, pero penso que non o vou facer».

Mayo de 2016. Cinco miembros de una misma familia fueron hospitalizados en Cee por intoxicación con toxinas lipofílicas después de comer cinco kilos de mejillones, también en paella, que habían adquirido a una vendedora ambulante. Los mejillones procedían de la Ría de Camariñas, cerrada por niveles elevados de dichas toxinas, 10 veces superiores al máximo legal permitido (La Voz de Galicia, 28/V/2016).

La mayoría de seguidoras y seguidores del blog seguramente trabajáis, estudiáis o tenéis mucho interés en temas relacionados con el mar y una opinión informada sobre este asunto. Pero mi intención es que esto llegue también a las personas que se comerían los platos de marisco que les servían al inicio porque desconocen los riesgos.

No pretendo aleccionar a nadie, solamente informar y luego que cada quien decida lo que hace con su salud, pero sabiendo de antemano los riesgos que asume.

Mural de Joseba Muruzábal en Ordes (A Coruña), perteneciente a la serie «Fenómenos rurales». Fuente: El Confidencial

En Galicia coexisten el medio urbano y rural en muchas familias y gracias a ello nos beneficiamos de un trasiego constante de productos de tierra y mar a través de lazos de parentesco o amistad. Todos conocemos a alguien que tiene una huerta y que nos regala a los urbanitas fruta, verdura, legumbres, huevos, etc. A cambio los urbanitas ponemos el vino y/o el postre, qué menos!

También es común, al menos en las poblaciones costeras, que los productos del mar entren en estos intercambios como regalos o a cambio de dinero. En esta categoría entran el pescado, crustáceos y moluscos, más apreciados y que pueden alcanzar un valor importante que «promueve» su comercio furtivo.

El marisco no es imprescindible para vivir, para muchas personas es todo un lujo. Y aquí está la contradicción que no alcanzo a comprender.  Si como consumidores nos preocupamos cada vez más por el origen y la trazabilidad de los alimentos ¿por qué jugarse la salud con el marisco furtivo?

Las toxinas del marisco ni se ven, ni se huelen, ni tienen sabor. En Latinoamérica las llaman por su nombre: veneno. Porque eso es lo que son, un veneno oculto en algunos productos del mar y como tal su presencia debe estar controlada de forma muy estricta para evitar intoxicaciones.

El control de biotoxinas lo ejercen las autoridades competentes, la Xunta de Galicia en nuestro caso. La identificación y cuantificación de las toxinas y sus niveles en los alimentos necesita de análisis previos en los laboratorios del INTECMAR mediante métodos de referencia aprobados en la Unión Europea.

Esos análisis de biotoxinas salen de nuestros impuestos y la seguridad de que el marisco es apto para el consumo depende de ellos y no de la palabra de familiares, amigos o vendedores ambulantes. No jueguen con la salud porque no merece la pena.

Fuente: Faro de Vigo (22-I-2018)

Referencias:

-Ríos A. y col. A Ciencia do Mexillón: ciencias e tecnoloxías mariñas implicadas no cultivo, transformación e comercialización do mexillón (Mytilus galloprovincialis). DIVULGAMAR-CSIC (Instituto de Investigaciones Marinas, IIM), pp. 135 (2010)
-Alfonso A. y col. Yessotoxins and Pectenotoxins. Seafood and Freshwater Toxins, pp. 657-676. DOI: 10.1201/b16662-27  (2014)
-Marine biotoxins in shellfish – Domoic acid. Scientific Opinion of the Panel on Contaminants in the Food Chain (Question No EFSA-Q-2006-065H). The EFSA Journal 1181: 1-61 (2009)
-Marine biotoxins in shellfish – okadaic acid and analogues. Scientific Opinion of the Panel on Contaminants in the Food chain (Question No EFSA-Q-2006-065A).  The EFSA Journal 589: 1-62 (2008)
-Martín Cerdeño V.J. Consumo de pescados y mariscos en España. Un análisis de los perfiles de la demanda. Distribución y Consumo, vol. 4, pp. 18 (2017)
-Pitschmann V. Overall View of Chemical and Biochemical Weapons. Toxins 6: 1761-1784 (2014)
-Reguera B. y col. Episodios de fitoplancton tóxico en la Ría de Vigo. LA RÍA DE VIGO. Una aproximación integral al ecosistema marino de la Ría de Vigo. Instituto de Estudios Vigueses. pp 153-199 (2009)