El LED que valió un Nobel

En 2014 el Nobel de Física fue para los japoneses Isamu Akasaki, Hiroshi Amano (antiguo estudiante de Akasaki en la universidad de Nagoya) y Shuji Nakamura (univ. de Sta. Bárbara, EEUU), por la invención de «LEDs azules eficientes que han hecho posible fuentes de luz blanca brillantes que ahorran energía«.

Generated by IJG JPEG Library

Los ganadores del Nobel de física (2014), de izda. a dcha., I. Akasaki, H. Amano y S. Nakamura. Autor: The Asashi Shimbun. Fuente: Getty Images.

La Real Academia de las Ciencias de Suecia llamó al profesor Nakamura a las 3 de la madrugada para anunciarle el galardón. Querían hablar con él justo después en la conferencia de prensa que anunciaría su Nobel. Pero la calidad del sonido fue tan lamentable que sólo se le entendió «unbelievable«.

Alfred Nobel creó los premios que llevan su apellido para reconocer invenciones y descubrimientos que aportasen beneficios a la humanidad.

Un 20% del consumo de energía de los países industrializados se dedica a producir luz. Por ello fuentes de luz eficientes como los LED tendrán un impacto importante en la economía, la sociedad y la protección del medio ambiente (al menos eso dicen los que entienden de esto).

La iluminación LEDLight Emmision Diode») —transforma directamente la energía eléctrica en luz— no emite apenas calor, tiene una vida media más de 100 veces superior a las bombillas incandescentes y no utiliza elementos contaminantes como el mercurio en los tubos fluorescentes. La tienen en sus bolsillos: la luz blanca del flash y de las pantallas de los smartphones usan tecnología LED por ejemplo.

04_rgb-system

Modelo RGB para la representación de colores. Fuente: fotovideotec.de

Isaac Newton descubrió en el s.XVII que el espectro de luz visible se podía descomponer en 7 colores (del violeta al rojo), gracias a sus experimentos con prismas.

Para obtener luz blanca basta recrear el espectro visible usando distintas longitudes de onda como el azul, verde y rojo. En eso consiste el RGB (Red/Green/Blue), el modelo «aditivo» que usamos para representar colores en dispositivos electrónicos (TV, ordenadores, cámaras).

Los primeros LED eran rojos y se desarrollaron a comienzos de los 60′. Los LED verdes se obtuvieron a finales de dicha década, pero los azules necesitaron 30 años más. 

El sistema LED emplea materiales semiconductores pero los cristales de nitruro de galio (GaN) necesarios para el azul se hacían polvo, literalmente

4-gallium-nitride-crystal

Cristal de nitruro de galio. Fuente: Sustainable nano. Si quieren saber más sobre los diodos LED les recomiendo visitar dicha web.

A pesar de los esfuerzos de la industria y centros de investigación la tecnología necesaria para crecer dichos cristales con las propiedades precisas no estaba disponible.

Y aún teniéndola no fue hasta finales de los 90′ (gracias a nuestros héroes japoneses), cuando se hizo la luz azul y blanca de LED, con el desarrollo de cristales de GaN de alta calidad y el diseño adecuado. Para que se hagan una idea, hace falta superponer hasta 7 capas de distintos materiales cuyo grosor es inferior a una micra para conseguir la emisión de luz azul LED.

led

Espectro habitual de un LED blanco de uso doméstico y sus 2 componentes: el pico del LED azul y la «colina amarilla» del fósforo. Fuente:Behar-Cohen y col. (2011)

Hoy en día el sistema más habitual y barato de obtener luz blanca no es combinar 3 LED (azul/verde/rojo), sino acoplar un LED azul (o UV) a una lámina de fósforo. Éste absorbe parte de la luz azul, excitándose y emitiendo luz a longitudes de onda desplazadas al amarillo. La suma de ambos la percibimos como luz blanca.

La luz azul es muy útil !! Los diodos de láser azul aumentarán la capacidad de almacenar y acceder a la información respecto al láser rojo tradicional (el Blu-ray es un ejemplo). Y el uso de LED UV (posible gracias a los LED azules) podrían servir para esterilizar agua.

UVVISspectra

Luz cálida (A) y fría (B) de tubos fluorescentes. (C) y (D) son ejemplos de luces típicas (amarillenta y blanca, respectivamente) en espacios públicos. Fuente: Behar-Cohen y col. (2011)

Sin embargo, también tiene sus riesgos.  En los próximos años asistiremos al uso generalizado de luz blanca LED en espacios públicos y domésticos. Esto aumentará en teoría nuestra exposición al azul, cuya longitud de onda es relativamente más energética.

Nuestros ojos perciben tonos fríos o cálidos de luz según el predominio de ciertas longitudes de onda (temperatura del color, con unidades en grados kelvin: 2000-3000 K sería luz amarillenta y 5000-7000 K, blanca fría). La luz LED estándar es fría por su tono más azulado. Observen si no los ejemplos de luces «tradicionales» y compárenlos con el LED.

—Los riesgos de la luz azul se conocen desde hace 4 décadas—

Por ello, la Agencia Francesa para la Seguridad Alimentaria, del Medio Ambiente y Ocupacional (ANSES) coordinó un grupo de expertos para elaborar un informe sobre LEDs, citado en 2011 en la publicación científica «Light-emitting diodes (LED) for domestic lighting: Any risks for the eye?».

En ella se insiste en que las células ganglionares y del epitelio pigmentario de la retina son susceptibles de sufrir daños a causa del azul. En concreto, la interacción de luz azul con moléculas de la retina supone un riesgo potencial para ciertos grupos de edad (niños y ancianos) y patologías oculares (degeneración macular, glaucoma, afaquia o pseudofaquia).

Con el fin de reducir la toxicidad potencial de la luz, ANSES recomienda evitar LED fríos (con mucho azul) en lugares frecuentados por niños o en aquellos objetos que usen a menudo (juguetes, paneles electrónicos, consolas, luces nocturnas).

Esto se debe a que en niños se transmite un 65% de luz azul a la retina, mientras que con la edad el cristalino aumenta la absorción del azul.

La recomendación general es reducir la exposición al azul en luz artificial. En comparación a la luz natural y a igual temperatura de color el LED doméstico suele poseer un 20% más de azul.

El mercado ofrece muchos tipos de LED y temperaturas de color. Sólo se trata de informarnos bien y emplear las luces adecuadas en cada caso. Para lámparas de uso doméstico son recomendables ambientes cálidos y temperaturas de color bajas (sobre 2800 grados kelvin).

Las algas no tienen problemas con el azul, es su color favorito. Están expuestas a un espectro de luz desplazado al azul-verdoso (λ <500 nm), porque el agua absorbe las longitudes de onda largas.

Haslea Charco Manso 2b

La diatomea Haslea sp. aislada en El Hierro (Canarias). Autor: F. Rodríguez

En conjunto las algas son un filtro verde-azulado (en palabras de Shirley Jeffrey) que aprovecha esa luz tan especial gracias a una gran diversidad de pigmentos.

Pero además de la fotosíntesis, el color azul cumple un papel importante para activar fotoreceptores específicos que controlan (en diatomeas por ejemplo), el movimiento de los cloroplastos y la división celular.

También en diatomeas, la luz azul favorece la producción de marenina, un pigmento azulado propio del género Haslea.

La aclimatación del aparato fotosintético a los cambios de calidad de luz (no sólo al azul sino a todo el espectro visible), se llama adaptación cromática. Afecta al contenido y proporciones de pigmentos fotosintéticos y es un fenómeno bien conocido en cianobacterias, que poseen compuestos con máximos de absorción a distintas λ (ficoeritrinas y ficocianinas, de color rojo y azul, respectivamente).

Todos los días sale el sol comp

Emiliania huxleyi. Autor: Sergio Seoane.

Los eucariotas no tienen esos pigmentos (excepto las criptofíceas), así que las evidencias de adaptación cromática son más bien escasas.

Sobre esto, les comentaré los resultados de un estudio recién publicado en colaboración con José Luis Garrido, del IIM-CSIC en Vigo, investigador experto en pigmentos (y colega mío, ya era hora de hablar de los amigos !!) que trabaja desde hace años con Emiliania huxleyi.

Emiliania es un cocolitofórido del que hemos tratado más de una vez por su importancia ecológica. Tiene muchos pigmentos y es un modelo ideal para estudiar sus cambios frente a la luz.

fig1

Diseño de los LED y filtros de colores en el trabajo de Emiliania. Fuente: Garrido y col (2016)

José Luis diseñó el siguiente experimento: cultivar una cepa de Emiliania en una sala equipada con LED blancos y filtros azules, verdes y rojos. Y algunos pigmentos cambiaron en respuesta a esos colores… 

En concreto carotenoides relacionados con la fucoxantina, los más importantes para capturar luz en Emiliania —que no tendrían motivos, en principio, para que les afecte el color ya que absorben λ parecidas

En luz azul el pigmento dominante era la hexanoyloxifucoxantina, muy común en océano abierto donde la luz está enriquecida en el azul.

Pero la luz verde (y roja también), provocaba que la fucoxantina fuese el carotenoide principal. En aguas costeras el espectro de luz es más verdoso y dominan a menudo las diatomeas cuyo principal carotenoide es…lo adivinan? Sí, la fucoxantina.

circulo2

Proporción de fucoxantinas con luz AZUL (izquierda) y VERDE (derecha) en Emiliania. Fx (fucoxantina), HFx (hexanoyloxifucoxantina), 4KHF (4-keto-HFx), PFx (pentanoyloxifucoxantina). Datos: Garrido y col. (2016)

En Emiliania estos cambios sugieren que la eficacia fotosintética de las fucoxantinas es distinta y que su diversidad e interconversión optimizarían la fotosíntesis según la λ de los fotones (y no sólo la intensidad de la luz).

Estos resultados son sorprendentes y hermosos para quienes trabajamos con pigmentos desde hace tanto tiempo.

La riqueza pigmentaria de Emiliania no es un capricho de la naturaleza sino que contribuye a explicar su flexibilidad fotosintética y capacidad para proliferar en aguas oceánicas y costeras.

Referencias:

-Behar-Cohen F. Light-emitting diodes (LED) for domestic lighting: Any risks for the eye?. Prog. Retin. Eye Res. 30:239-257 (2011).
-Brunet C y col. Spectral radiation dependent photoprotective mechanism in the diatom Pseudo-nitzschia multistriata. PLoS ONE 9(1): e87015. doi:10.1371/journal.pone.0087015
-Garrido JL y col. Pigment variations in Emiliania huxleyi (CCMP1370) as a response to changes in light intensity or quality. Env. Microbiol. (in press, 2016). DOI: 10.1111/1462-2920.13373
(Visited 589 times, 1 visits today)
0 comentarios

Dejar un comentario

¿Quieres unirte a la conversación?
Siéntete libre de contribuir

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *