Entradas

El incidente Caruaru

Imagen de portada: bloom de Microcystis aeruginosa (playa de São Lourenço do Sul). Fuente: Lemes y col. (2015)

El agua es parte esencial del cuerpo humano

Para ser exactos entre el 50-60% de nuestro peso. De ella y de las sustancias que contiene depende nuestra supervivencia. Como el plasma, parte líquida de la sangre que además de sales, nutrientes, etc., transporta desechos que debemos eliminar.

Y aquí es donde llegamos a los riñones, los órganos vitales que limpian la sangre filtrando unos 180 litros al día.

Su importancia la resume el dicho popular de que algo muy caro (o que necesita mucho esfuerzo) «cuesta un riñón«. La tarea básica de los riñones es la eliminación y regulación de líquidos. Nos libran de compuestos perjudiciales devolviendo a la sangre sustancias vitales (agua, glucosa, sal, etc.) para mantener en equilibrio a nuestro organismo.

En caso de insuficiencia renal (<10% de función renal) no queda más remedio que abordar terapias como diálisis o transplantes. Existen dos tipos de diálisis: hemodiálisis y diálisis peritoneal.

En la hemodiálisis un riñón artificial (dializador) cumple la función de depurar la sangre. Contiene un filtro con dos partes, una para la propia sangre y otra para un líquido de baño o lavado: el dializado.

La sangre y el dializado entran en contacto separados por una membrana. Al inicio del tratamiento se practica una cirugía menor al paciente como vía de acceso para el dializador.

La sangre circula en dirección contraria al dializado, que la limpia por difusión. Normalmente se hacen 3 sesiones de 4 horas de duración por semana.

Los elementos más importantes y de mayor tamaño de la sangre (células sanguíneas, proteínas, etc.) permanecen en la sangre que llega al dializador.

A través de la membrana se difunden productos de desecho como urea, creatinina (e iones como Na y K), que pasan al dializado y se eliminan. El líquido de lavado se puede modificar según las necesidades de cada paciente.

El incidente Caruaru

Caruaru es una ciudad minera en el estado de Pernambuco, en Brasil.

A comienzos de 1996, tras una larga sequía, la ciudad sufrió cortes en el suministro de agua corriente. Esto puso en dificultades a las dos clínicas de diálisis de Caruaru (privadas pero con subvención parcial del gobierno).

Embalse de Tabocas. Fuente: wikimedia commons.

El agua empleada en la diálisis procedía de la red de abastecimiento municipal, tomada del embalse de Tabocas a unos 40 km de distancia.

Tras su depuración previa para el suministro público, las clínicas de diálisis realizaban una purificación adicional pasándola a través de columnas de arena, carbón y resinas de intercambio iónico, antes de atravesar un filtro de microporos. Las columnas se regeneraban cada 3 días.

Pero algo cambió durante la sequía.

Al fallar el suministro público, entre el 13 y 17 de febrero, una de las clínicas recibió el agua desde Tabocas mediante camiones cisterna. El único tratamiento previo fue añadir altas concentraciones de cloro y luego la clínica elaboró el dializado usando el procedimiento habitual.

Esa clínica era el Instituto de Doenças Renais (IDR) y tenía 126 pacientes en su programa de hemodiálisis. En cuanto les practicaron la diálisis con aquella agua desarrollaron síntomas neurológicos (alteración visual, náuseas, vómitos, etc.), evidenciando daños hepáticos en el 89% de los pacientes.

La primera muerte se produjo el 20 de febrero. El 6 de marzo había 10 víctimas y clausuraron la unidad de diálisis trasladando a los pacientes a Recife. Pero el daño ya estaba hecho. El 4 de agosto habían fallecido 55 personas, con un recuento final de 60 víctimas.

Las muertes se produjeron por daños hepáticos o indirectamente por complicaciones como sepsis, sangrado gastrointestinal y problemas cardiovasculares.

¿Cuál fue el motivo? ¿qué tenía aquella agua?

Estructura de las microcistinas. Las abreviaturas indican los aminoácidos que incluyen. A, alanina; L, leucina; R, arginina; Y, triptófano. Fuente: Pérez-Morales y col. (2016).

Los análisis iniciales de suero sanguíneo buscaban contaminantes como metales pesados, pesticidas, cloraminas…y no detectaron nada anormal.

Pero cuando se planteó que pudiesen ser toxinas de cianobacterias, los resultados demostraron la presencia de microcistinas (-YR, -LR y -AR). La microcistina-LR es la más tóxica.

Las microcistinas son heptapéptidos cíclicos. Se conocen más de 200 variantes en la actualidad.

Provocan potentes efectos hepatotóxicos e inhiben proteínas fosfatasas en mamíferos con graves consecuencias (p.ej. daños al ADN y necrosis celular).

También son promotoras de tumores de hígado en animales de laboratorio. Un desastre total, vamos.

Los estudios patológicos en muestras de hígado de los pacientes afectados mostraron alteraciones idénticas a las observadas en animales domésticos y salvajes intoxicados con microcistinas (i.e., ruptura de placas celulares hepáticas y otras deformidades).

Las cianobacterias dominantes en el embalse de Tabocas son tropicales. El examen de las comunidades de fitoplancton en años anteriores demostró que las cianobacterias (Microcystis, Anabaena y Cylindrospermopsis) eran el componente dominante desde 1990. Su proliferación en cuerpos de agua como los embalses se debe a condiciones ambientales favorables (confinamiento, elevadas temperaturas) y un mayor aporte de nutrientes a menudo de origen antropogénico.

Cianobacterias en el embalse de Salto Grande (Brasil). A) Microcystis sp., B,M) Cyanobium sp., C) Calothrix sp., D) Chroococcidiopsis sp., E) Romeria victoriae, F) Microcystis panniformis, G) Synechococcus nidulans, H) S. elongatus, I) Microcystis sp., J) Lyngbya sp., K,L) Leptolyngbya sp. Fuente: Genuário y col. (2016).

En el periodo previo y durante las intoxicaciones en febrero de 1996 no se recogieron muestras. Pero un primer estudio tras la intoxicación mostró poblaciones diversas entre marzo-mayo de 1996 incluyendo Aphanothece, Aphanizomenon, Chroococcidiopsis y Microcystis, entre otros géneros.

Años después se analizaron muestras recogidas a finales de marzo de 1996, demostrando que las cianobacterias representaban el 99% de la comunidad de fitoplancton, con más de 20 millones de células/litro (principalmente Aphanizomenon manguinii y dos especies de Oscillatoria).

Las principales productoras de microcistinas incluyen por supuesto a Microcystis, pero también Planktothrix, Oscillatoria, Anabaena y Aphanizomenon.

Las microcistinas son las únicas cianotoxinas para las que la OMS ha dictado pautas sanitarias, con límites de seguridad establecidos en agua potable de 1 μg/L/día de microcistina-LR (y un nivel medio de alerta de 20 μg/L).

Pues bien. En el suero de los pacientes intoxicados se detectaron hasta 10 μg/L de microcistinas y se estima que el agua en origen contenía hasta 19,5 μg/L.

En el material de las columnas de filtración de agua de la clínica IDR se descubrieron restos intactos y fragmentos de microalgas y cianobacterias, además de otras cianotoxinas (cilindrospermopsinas).

Los tratamientos de hemodiálisis empleaban unos 120 litros de agua por persona, así que ya se imaginarán que la concentración de cianobacterias y cianotoxinas en Tabocas fueron más que suficientes para causar intoxicaciones agudas en los infortunados pacientes del IDR.

El incidente de Caruaru planteó la necesidad de incluir a las cianotoxinas en el control del agua y mejorar las técnicas de tratamiento previas a la diálisis. A raíz de aquel suceso Brasil introdujo -en el año 2000- cambios legislativos incluyendo a cianobacterias y cianotoxinas en el control de calidad del agua para el consumo humano.

Agradecimientos: la historia de hoy surgió de una cita de Luiz Mafra durante su presentación «O que há de novo no outro lado do Atlântico? Estudos recentes sobre Microalgas Nocivas e Toxinas no litoral brasileiro» durante las sesiones online de la XIV Reunión Ibérica de Biotoxinas Marinas y Fitoplancton Nocivo, REDIBAL (29 y 30 de junio 2021).

Referencias:

  • Azevedo SM y col. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 181-182:441-446 (2002).
  • Drobac D. y col. Effects of cyanotoxins in humans. Arh Hig Rada Toksikol 64:305-316 (2013).
  • Genuário DB y col. Cyanobacterial community and microcystin production in a recreational reservoir with constant Microcystis blooms. Hydrobiologia 779:105–125 (2016).
  • Jochimsen EM y col. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. N Engl J Med 338:873-878 (1998).
  • Komárek J. Background of the Caruaru tragedy; a case taxonomic study of toxic cyanobacteria. Alg Studies 103:9-29 (2001).
  • Pérez-Morales A. y col. Estado actual del estudio de cianobacterias dulceacuícolas formadoras de florecimientos en el centro de México. p. 408-421. En: García-Mendoza E. y col. (eds.). Florecimientos Algales Nocivos en México. Ensenada, México. CICESE. 438 pp. (2016).
  • Pouria S. Fatal microcystin intoxication in haemodialysis unit in Caruaru, Brazil. Lancet 352:21–26 (1998).
  • Turner AD y col. Analysis of Microcystins in Cyanobacterial Blooms from Freshwater Bodies in England. Toxins 10:39 (2018).
  • Fuentes Web: National Kidney Foundation. Hemodiálisis, lo que necesita saber (2006).

Sobre los errores en las proliferaciones de Canarias

(Imagen de portada: Jannoon028-Freepik.com)

Un buen título es importante. Por eso he cambiado el original (Mensaje en una botella) por este otro que hace referencia directa al tema de la entrada, sugerido por mi colega Esther Garcés del ICM-CSIC.

Divulgar ciencia, ya sea voluntariamente u obligados por las circunstancias, es algo que todos los investigadores hacemos en algún momento (Ciencia en Común). Soy entusiasta de ello y consumo bastante divulgación en los ratos de ocio, hecha por periodistas, maestros, científicos y aficionados que comparten su experiencia y conocimiento en medios públicos de comunicación.

Me gusta pensar que pertenezco a ese club que es la divulgación de todos y para todos. Por eso mismo sé muy bien lo difícil que resulta elaborar un texto sobre un tema de ciencia. No en vano solo escribo de microalgas (sí, también de cianobacterias) para no equivocarme demasiado. Dar un paso más allá me parece inútil, primero porque la divulgación es un aspecto más de mi trabajo y segundo porque no aportaría nada a lo que ya escriben los divulgadores de otros campos.

Dentro de mi campo de estudio apenas araño en la superficie de un tema tan vasto como el fitoplancton. Y no es que yo sea especialmente tonto (que también, pero ese es otro asunto) sino que esa palabra, fitoplancton, encierra un infinito campo de investigación que no dará tiempo a abarcar así explote el Sol y abrase los planetas en 2000 o 3000 millones de años (me gusta mucho la astronomía, hasta aquí mi divulgación del Sistema Solar).

Por ello, escuchar y leer todo lo que se ha vertido a los medios de comunicación este verano sobre las proliferaciones de Trichodesmium erythraeum en Canarias deja patidifuso a cualquiera que trabaje en un laboratorio y se dedique a la investigación, incluidos yo y mi gato (C.A.T. Sheldon). Sí, porque mi gato también es investigador. Una vez quiso investigar si podía pescar dentro del acuario tropical y saltó sobre la tapa de cristal, con el resultado de varios peces volando y otros tantos huesos rotos. 

Nunca máis: be water my friend es solo un eslogan

Entre los divulgadores que más sigo en España les confieso que admiro enormemente al periodista Antonio Martínez Ron, autor de Fogonazos entre muchísimas otras cosas más. Pues bien, en la «Cátedra de Cultura Científica de la Universidad del País Vasco», Martínez Ron publicó Veinte consejos para interpretar resultados y publicaciones científicas, resumiendo y adaptando un artículo de Nature (esa prestigiosa revista…) con el título Policy: twenty tips for interpreting scientific claims (Sutherland y col. 2013).

No tiene desperdicio y viene muy a cuento de lo sucedido en Canarias, empezando por este extracto del original:

Los llamamientos a una mayor integración de la ciencia en la toma de decisiones políticas han sido un asunto recurrente durante décadas. Sin embargo, existen serios problemas en la aplicación de la ciencia a la política […]
Una sugerencia para mejorar las cosas es animar a más científicos a involucrarse en la política. Ello, aunque loable, no es realista […] Otra propuesta es ampliar el papel de los principales asesores científicos, aumentando su número, disponibilidad y participación en los procesos políticos. Ninguno de estos enfoques trata del problema central de la ignorancia científica entre muchos de los que votan en los parlamentos.
¿Podríamos enseñar ciencia a los políticos? Es una idea atractiva, pero ¿qué político ocupado tiene tiempo suficiente? En la práctica, los responsables políticos casi nunca leen documentos o libros científicos. La investigación que incumbe al tema del día […] es interpretada para ellos por asesores o abogados. Y rara vez, o nunca, existe un experimento controlado, con doble ciego, aleatorizado, replicado, bien diseñado y con suficiente número de muestras para extraer conclusiones inequívocas sobre dicho tema particular.
En este contexto, sugerimos que la prioridad inmediata es mejorar la comprensión de los responsables políticos de la naturaleza imperfecta de la ciencia. Las habilidades esenciales son poder interrogar inteligentemente a expertos y asesores, y entender la calidad, limitaciones y sesgos de la evidencia.
Nosotros lo denominamos habilidades científicas interpretativas. Estas habilidades son más accesibles que las necesarias para comprender la ciencia fundamental en sí misma, y ​​pueden formar parte del amplio conjunto de habilidades de la mayoría de los políticos.
Con este fin, sugerimos 20 conceptos que deben formar parte de la educación de los funcionarios, políticos, asesores políticos, periodistas, y de cualquier otra persona que tenga que interactuar con la ciencia o los científicos. Los políticos con un sano escepticismo de los defensores científicos podrían simplemente preferir armarse con este conjunto de conocimientos críticos. [Trad. del original]

Qué bien explicado. Los 20 consejos serían largos de enumerar y me voy a centrar solamente en tres de ellos tal como los resumía Martínez Ron:

7. Extrapolar más allá de los datos es arriesgado. Los patrones encontrados dentro de un determinado rango no tienen por qué funcionar fuera de él. Observar un fenómeno en un ámbito y asumir que se da en otros ámbitos es un error común.

16. Cuidado con las generalizaciones. Un ejemplo claro son las conclusiones que se sacan de un experimento en ratones respecto a lo que puede suceder en humanos.

17. Los sentimientos influyen en la percepción de riesgo. A pesar de los datos objetivos, la percepción del riesgo puede obedecer a factores psicológicos y sociales. En EEUU, por ejemplo, se sobrevalora el riesgo de vivir junto a una central nuclear y se subestima el de tener un arma en casa.

Trasladando todo esto al asunto de Trichodesmium en Canarias: cualquier persona puede buscar en la web información sobre cianobacterias y toxinas, descargar artículos científicos o pseudocientíficos y elaborar una historia. Con la orientación que cada uno desee a condición de extrapolar, generalizar y dejarnos llevar por los sentimientos.

Pero eso no es comunicar información científica. Cualquier mensaje que combine esas tres condiciones tan humanas podrá despertar mucha adhesión, pero no por ello dejará de ser falaz o cuando menos equivocado.

–Veamos los tres consejos aplicados al caso de Canarias–

Edo Bar-Zeev y Eyal Rahav, los científicos israelíes autores del trabajo sobre el bloom de Trichodesmium en Israel. Fuente: Diario de avisos

7. Extrapolar más allá de los datos es arriesgado.

En las noticias que relacionan tajantemente los vertidos urbanos con las proliferaciones de Trichodesmium se defiende la existencia de dicha asociación no con datos de Canarias, sino con un artículo en invierno en el Mediterráneo oriental (Rahav y col. 2017) del que ya hablé en una entrada anterior.

Extrapolar dichas evidencias directamente a Canarias es un ejemplo perfecto del riesgo sobre el que avisa este consejo. Basta leer la oportuna entrevista a dichos autores en Diario de Avisos (30-VIII-2017)

16. Cuidado con las generalizaciones.

Cierto, las microcistinas son toxinas muy potentes. Su presencia (y la de otras cianotoxinas) plantea un serio riesgo para la salud de personas y animales en fuentes de agua de uso agrícola y potable contaminadas por cianobacterias tóxicas. Es decir, proliferaciones en aguas continentales que enseguida relacionamos con la eutrofización (porque además en muchos casos es así). Pero Trichodesmium no es una cianobacteria de agua dulce.

Produce microcistinas y un informe interno del BEA que citaba algunos efectos de dichas toxinas («una exposición continuada a esta cianobacteria puede promover el desarrollo de tumores primarios de hígado a medio-largo plazo»), ha servido para denunciar que existe un grave riesgo sanitario guardado en secreto.

Por este motivo se ha cargado también, injustamente, contra los autores de dicho informe realizado a partir de muestras recogidas en el mar de Las Calmas (El Hierro).

Fórmula química de la microcistina-LR. Autor: Anton Lebedev. Fuente: 123RF

En mi opinión, el error en dicho documento (fechado el 23-24 junio) era hablar de exposición a «esta cianobacteria» en lugar de «microcistinas«, generalizando dichos efectos a Trichodesmium y dejando abierta la interpretación a que dichos síntomas se han registrado en humanos. Lo cual es falso.

No olvidemos tampoco que en aquel momento las proliferaciones eran apenas una anécdota: nadie imaginaba que iban a durar tanto tiempo ni alcanzar tales dimensiones físicas y mediáticas. Yo solo veo un error en un informe interno oficial, sin la información ni el contexto necesarios en una comunicación pública. A posteriori, cuando se ha consultado a los autores, estos han corregido y contextualizado la información de dicho informe (Diario de Avisos, 27-VIII-2017).

Un informe público oficial es otro asunto: debe contener elementos científicos presentados con reflexión y profundidad, con datos locales para que la información sea lo más veraz y completa posible. Aún es pronto y dicho informe no está disponible. Tal como ha explicado Javier Arístegui (ULPGC, director del SITMA) el debate sobre las proliferaciones de Trichodesmium debe ser científico (Canarias7: 31-VIII-2017). Dicho artículo menciona que el Gobierno ha encargado al propio Arístegui un informe científico con el que abrir ese debate basado en datos no en opiniones.

Mientras tanto, no existen estudios científicos que asocien las proliferaciones marinas de Trichodesmium con esos terribles síntomas en humanos. Al menos yo no los conozco y el libro Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management de la Organización Mundial de la Salud (OMS, 1999) que consulté, a propósito para esta entrada, tampoco los menciona. Tampoco en publicaciones posteriores como Guidelines for safe recreational water environments (OMS, 2003 y 2009).

Fuente: NHBS

En un libro reciente, Toxic and Harmful Microalgae of the World Ocean (UNESCO; Lassus y col. 2016) se resumen los efectos sobre personas y fauna marina expuestas a proliferaciones de Trichodesmium a lo largo del mundo, así como sus toxinas. En el caso de las personas menciona un misterioso síndrome en bañistas citado en Brasil en 1963: «la fiebre de Tamandaré» que Proença y col (2009) pusieron en duda sobre su naturaleza y relación con Trichodesmium. En Asia destaca un caso en Kuwait en 2000, con un bloom que ocasionó molestias tales como náuseas, fuertes olores, tos e irritación en los ojos. Y finalmente Oceanía (Australia) donde también se han registrado molestias en bañistas.

Las proliferaciones anuales de cianobacterias tóxicas que se desarrollan en verano en playas de Europa, concretamente en el Báltico en la región de Gdansk (Polonia) son un tema diferente a Trichodesmium del que ya hablamos en una entrada anterior. Suelen ocurrir cuando el agua supera los 20ºC y llegan a ocasionar prohibiciones de baño y cierres por precaución en playas afectadas por proliferaciones masivas (p.ej. Nodularia, Dolichospermum Aphanizomenon).

Las autoridades de cada país son responsables de decretar las limitaciones del baño o cierres de playas y aguas recreativas, así como de informar a la población sobre la existencia y naturaleza de dichas proliferaciones. Las aguas de baño se controlan regularmente y las decisiones de los gestores políticos, tanto en Polonia como en los demás países de la UE, deben seguir la Directiva Europea sobre las aguas de baño (2006/7/EC) que en su artículo 8 «Riesgos debidos a cianobacterias» dice lo siguiente:

1. Cuando el perfil de las aguas de baño indique propensión a la proliferación de cianobacterias, se llevará a cabo un control adecuado que permita la identificación oportuna de los riesgos para la salud.
2. Cuando se produzca proliferación de cianobacterias y se haya determinado o presumido la existencia de un riesgo para la salud, se adoptarán inmediatamente medidas de gestión adecuadas con el fin de prevenir la exposición a aquéllas, que incluirán la información al público.

La ingestión de grandes cantidades de agua (o continuada a lo largo del tiempo) o espuma de cianobacterias representan un riesgo en aguas continentales para personas y animales, pero no en el mar por razones obvias. En este caso, las limitaciones del baño o incluso cierres de playas en los casos más graves son las únicas medidas disponibles, dado que la mitigación de las proliferaciones en zonas costeras es algo todavía en fase de estudio, sin éxitos ni precedentes a gran escala.

Los datos disponibles sobre los efectos de microcistinas y otras cianotoxinas están descritos en los libros de la OMS antes citados y pertenecen a ensayos en animales (tal como aclaró Emilio Soler en referencia al informe interno del BEA) por vía oral y/o inyecciones directas. Dichos ensayos suelen usar ratones (también cerdos), en dosis elevadas y/o prolongadas en el tiempo, para estudiar toda clase de efectos y establecer p.ej. los niveles tolerables de cianotoxinas.

Cabe destacar que para muchas cianotoxinas no existen datos suficientes para dichos cálculos: solo encontré valores de «Ingesta Diaria Tolerable» (dosis diaria a lo largo de toda la vida sin efectos adversos en personas) para microcistinas-LR (las más tóxicas, de Microcystis aeruginosa).

Pero también se han realizado ensayos con cianobacterias tóxicas de agua dulce en humanos.

Pilotto y col (2004) estudiaron en un grupo de 114 voluntarios los efectos de la aplicación directa sobre la piel de parches con cultivos de cianobacterias, tóxicos y no tóxicos, de los géneros Microcystis y Cylindrospermopsis, entre otras. Al comienzo del artículo citan lo siguiente: «En relación a las actividades recreativas en agua contaminada con cianobacterias, el contacto dérmico es una importante vía de exposición. Sin embargo, la naturaleza de los informes sobre reacciones alérgicas y dermatológicas son esporádicos y bastante anecdóticos» [Trad. del original]

Los resultados de su trabajo mostraron que alrededor del 20% de las personas desarrollaban reacciones leves en la piel en contacto con las cianobacterias, resueltas sin tratamiento al cesar la exposición. Y el porcentaje bajaba al 15% si excluían a las personas que también reaccionaban a cianobacterias no tóxicas.

Emisario submarino. Fuente: aguasresiduales.info

17. Los sentimientos influyen en la percepción de riesgo. 

Las proliferaciones han afectado a las costas de varias islas occidentales y todo apunta a condiciones ambientales favorables durante el verano. Aún así, la posible (al menos no descartable todavía) influencia de los emisarios submarinos, junto al aspecto desagradable, el mal olor y la persistencia de los blooms de Trichodesmium, han provocado un sentimiento de indignación y la percepción de una relación directa entre proliferaciones y emisarios.

Esta percepción ha crecido además por la falta de reflejos de las autoridades a la hora de elaborar un comunicado oficial, publicado finalmente el 11 de agosto, mientras crecía la confusión, opiniones cruzadas y alarmas infundadas durante el verano. A pesar de todo, dada la novedad de este asunto en Canarias, por muchas explicaciones que hubiese habido creo que la polémica habría alcanzado dimensiones parecidas. Sin datos locales e informes científicos todo este debate entretiene el asunto del verano pero resulta estéril.

El tiempo y los datos darán y quitarán razones.

El debate debe ser científico y también político porque la responsabilidad de la gestión presente y futura de asuntos como este recae en las autoridades. La comparecencia pública del próximo jueves 7 en el Parlamento (Canariasahora, 4-IX-2017) forma parte de las necesarias explicaciones que hasta ahora sólo han llegado tarde y parcialmente a través de la prensa nacional e internacional y el comunicado oficial del pasado 11 de agosto.

Sobre el debate científico, me encantaría ver un espacio de televisión con un grupo de expertos discutiendo sobre las proliferaciones de Trichodesmium con el informe científico sobre la mesa, abierto a la participación del público. Tengo una pregunta para usted, versión ciencia !!

Adenda: aquí les dejo el enlace al informe científico «Sobre la presencia de Trichodesmium spp.
en aguas de Canarias en el verano de 2017″, firmado el 2 de septiembre y elaborado por los investigadores A.G. Ramos, J. Arístegui y M. Benavides, publicado a posteriori de esta entrada.

Referencias:

-Guidelines for safe recreational water environments. Vol. 1 (2003) y addendum a Vol. 1 (2009). Disponibles en la web de la OMS
-Pilotto L. & col. Acute skin irritant effects of cyanobacteria (blue-green algae) in healthy volunteers. Aust. N. Z. J. Public Health 28:220-224 (2004)
-Sutherland WJ & col. Policy: Twenty tips for interpreting scientific claims. Nature 503:335-337 (2013).
-Toxic and harmful microalgae of the world ocean. Lassus P. & col. (Eds.). IOC-UNESCO. Manuals and guides. Vol.: 68. 523 p. (2016)
-Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. Chorus I. & Bartram J. (Eds.). WHO, UNESCO, UNEP. 400 p. (1999). Disponible en la web de la OMS.