Entradas

ICHA18 (Nantes, 2018)

Imagen de portada: macarons ICHA [Autora: @MartinaADoblin]

Maquetas de Vulcanodinium rugosum y Dinophysis acuminata en «La Cité», el centro de eventos donde se celebró ICHA2018. Autor: F. Rodríguez.

Dudaba si escribir o no esta entrada porque otras anteriores sobre conferencias ICHA no despertaron mucha atención. Pero tropezaré 3 veces con la misma piedra porque la Conferencia Internacional sobre Algas Tóxicas es LA REUNIÓN.

En ella se muestran los últimos avances y temas candentes en el estudio de microalgas tóxicas y no puedo despedir el año sin hablar de ella.

El programa de las ICHA es lo más parecido a una «Olimpíada de algas tóxicas» con muchas disciplinas simultáneas. Y aunque no se repartan medallas también hay algunos premios!

Las convoca cada 2 años la ISSHA (International Society for the Study of Harmful Algae), que colabora con el comité organizador en su celebración (p.ej. con becas de viaje para estudiantes) y en la publicación posterior de comunicaciones.

Hall de «La Cité» durante la ICHA2018. Autor: @cilmkt.

La XVIII edición se celebró en Nantes (Francia) entre el 21-26 de octubre 2018 y batió el récord de participación con más de 750 personas de 64 países. El comité organizador estaba formado casi exclusivamente por investigadores del IFREMER, con Philipp Hess a la cabeza.

Los 3 grandes temas considero que fueron [1] ecología (dinámica de poblaciones, biogeografía y efectos del cambio climático), [2] detección de toxinas y [3] estudios «ómicos» (principalmente genómicos y transcriptómicos).

Pero no se asusten: no pretendo levantar acta de 623 contribuciones (entre charlas orales y pósters) agrupadas en 24 temas. Para ello ya está el listado de comunicaciones y resúmenes en ICHA2018. Les hablaré desde mi perspectiva parcial, subjetiva y muy limitada sobre algunos de los trabajos que más me impactaron.

Asistir a todas las charlas con 3 sesiones simultáneas era imposible, te mueves entre salas y aún así cuando los horarios se desplazan no llegas a tiempo…

Un copépodo productor de copepodamidas citado por Lundholm: Centropages hamatus. Giant Microbes lo vende en mini-peluche. Fuente: ZIMNES.

Eso mismo me pasó con una de las presentaciones más atractivas: «Induction of domoic acid production: kinetics and types of grazers and diatom species«, de Nina Lundholm (Museo de Historia Natural de Dinamarca, Copenhage).

Las copepodamidas son lípidos polares producidos por copépodos -es decir, predadores de fitoplancton- descubiertos en 2015 (Selander y col.) como señales químicas inductoras de la producción de toxinas paralizantes en dinoflagelados (Alexandrium minutum).

Se trata de las primeras sustancias identificadas en la interacción entre fitoplancton y zooplancton: las copepodamidas alertan al fitoplancton de la amenaza de los predadores y desencadenan como respuesta defensiva la producción de toxinas. Y Lundholm explicó que también estimulan la producción de toxinas amnésicas (ácido domoico) en diatomeas del género Pseudo-nitzschia.

Alexandrium catenella. Autor: Pablo Salgado.

Los trabajos sobre cianobacterias disfrutaron de un protagonismo mucho mayor que en reuniones pasadas como una charla plenaria de Anna Michalak (Stanford University, EEUU), sobre los blooms de Microcystis en el lago Erie.

También se presentaron numerosos estudios sobre Alexandrium catenella productor de toxinas paralizantes– cuyas proliferaciones anuales en el sur de Chile suponen serios riesgos para la salud pública e impacto socio-económico por sus efectos negativos sobre la extracción y comercialización de productos marinos (marisco y acuicultura).

La lista de investigadores e instituciones implicadas sería muy larga (IFOP, Universidad Austral, de Concepción, de Los Lagos, San Sebastián, laboratorios ministeriales, Plancton Andino, etc) y demuestra el esfuerzo actual dedicado en Chile tanto a esta especie como a otras microalgas nocivas (Dinophysis) e ictiotóxicas (Pseudochattonella y Karenia).

Pero si tengo que mencionar un asunto que centrase la atención me quedo con casi 60 comunicaciones relacionadas con ciguatera, incluyendo la descripción de dos nuevas especies del dinoflagelado causante de dicha intoxicación: Gambierdiscus lewisii y holmesii, de la gran barrera de coral (póster 123; Kretzschmar y col.).

Pez Napoleón (Cheilinus undulatus). Autor: Giusseppe Mazza. Fuente: Mónaco Nature Encyclopedia.

Mireille Chinain (Instituto Louis Malardé (ILM), Papeete, Polinesia francesa), insistió en la importancia de caracterizar la diversidad de especies de Gambierdiscus y sus toxinas para relacionar dicha información con los perfiles de toxinas encontrados en peces ciguatos.

Destacó que algunos ejemplares muestran efectos visibles que reconocen los pescadores y asocian con su toxicidad, como cambios de color (Cheilinus undulatus: verde (ok!), azul-púrpura (ciguato!)), y/o trastornos del comportamiento al nadar. También hemorragias en la cola, que relacionan con los efectos hemolíticos de las toxinas evitando consumir dichos peces.

Chinain también llamó la atención sobre casos recientes de ciguatera no asociados a peces sino con invertebrados: erizos, gasterópodos, pulpos y langostas (Islas Marquesas y Kiribati: Harmful Algal News nº60). Sólo en la Polinesia francesa se declaran 350-500 casos anuales (Clémence Gatti, ILM). Por ello el 100% del personal sanitario ha tratado pacientes con ciguatera alguna vez, y el 45% con personas aquejadas de síntomas crónicos. Casi el 60% de los afectados opta por remedios tradicionales y solo acuden al médico en los casos más graves.

Mero de Cola Luna (Variola louti). Autor: Jacek Madejski. Fuente: Naturalista.

Luc de Haro (Assistance Publique Hôpitaux de Marseille, Marsella, Francia), recordó la siguiente anécdota: la intoxicación por ciguatera en una pareja de turistas franceses en Mauricio en 2010, explicando que se trató de un brote después de una fuerte tormenta tras consumir Variola louti.

Los síntomas remitieron al cabo de 4-7 semanas y les recomendaron evitar el alcohol y peces tropicales.

Pero un año después, disfrutando de vacaciones en Senegal, les ofrecieron pescado en un hotel y aunque al principio se negaron luego les convencieron explicándoles que allí no existía ciguatera.

Pues bien: se intoxicaron otra vez! con un barbudo (Polydactylus quadrifilis). Pero fueron los únicos clientes del hotel que desarrollaron síntomas demostrando que estaban hipersensibilizados. Todavía se desconocen los mecanismos que provocan la resurgencia de ciguatera en pacientes que ya la han contraído.

Las últimas ICHA incluyen una modalidad de charlas breves asociadas a un póster, en las que solo da tiempo a señalar los resultados más interesantes para atraer la atención sobre el trabajo. Y esto fue lo que hizo Ingrid Sassenhagen (Université du Littoral Côte d’Opale, Dunquerque, Francia) de manera simpática. Mostró imágenes de unos parásitos desconocidos que observó en diatomeas y cuando esperábamos que revelase qué eran nos espetó: «si quieren descubrir su identidad visiten el póster 244, gracias!«.

Colonias gigantes de Phaeocystis globosa como las de esta imagen aparecen en las costas de China desde 1997. Fuente: Lu Songhui (2016).

Sobre los métodos de mitigación de proliferaciones tóxicas citaré a Z. Yu (National Laboratory for Marine Science and Technology, Qingdao, China) quien explicó los riesgos que suponen los blooms de enormes colonias de Phaeocystis globosa cuando proliferan cerca de circuitos para la toma de agua en la refrigeración de centrales nucleares.

Para eliminarlas han ensayado la deposición de arcilla modificada (cargada positivamente para atraer las células) que consigue eliminar un 70-80% de las células –y las que quedan no crecen porque quedan dañadas-.

Dicho método también lo ensayaron con éxito para limpiar un lago afectado por un bloom de cianobacterias tóxicas (Microcystis aeruginosa) durante los juegos nacionales de China en 2005.

Mini-cerebros. Autores: Thomas Hartung &David Pamies (Johns Hopkins Center for Alternatives to Animal Testing and Organome, LLC) & Paula Barreras & Carlos Pardo (Division of Neuroimmunology and Neurological Infections, Johns Hopkins Hospital). Fuente: Scientific American.

Thomas Hartung (Johns Hopkins University, Baltimore, EEUU), dio una charla plenaria sobre modelos en estudios toxicológicos. Muy interesante. Destacó la creciente concienciación sobre la limitación de los ensayos sobre modelos animales (“no somos ratas de 70 kg”), y que las líneas celulares acumulan también modificaciones genéticas y están sujetas a artefactos de cultivo.

Planteó el desarrollo de modelos virtuales que recreen la complejidad de los pacientes humanos hacia un “paciente virtual personalizado”. Modelos matemáticos que eviten ensayos reales en animales y que hagan un cribado previo para recrear los resultados “in silico”.

En ese momento habló de los “mini-cerebros”: tejidos cerebrales creados en su laboratorio a partir de células madre humanas, que muestran actividad y establecen comunicación entre sus neuronas. Un modelo prometedor para estudiar enfermedades degenerativas o los efectos de diferentes sustancias neurotóxicas tales como las biotoxinas producidas por las microalgas.

Y ahora comentaré tres charlas que me provocaron especial intriga e interés…

Bora Lee antes de desvelar su secreto!. Autor: F. Rodríguez.

La primera de ellas tiene que ver con esta misteriosa imagen. En ella una estudiante de doctorado, Bora Lee (Chonnam National University, Corea del Sur) se pregunta ¿qué es?

Se refiere al corpúsculo rojo que aparece en algunas células de dinoflagelados tóxicos del género Ostreopsis durante los muestreos naturales.

Pues dicho y hecho. Aisló corpúsculos rojos de varios individuos de Ostreopsis y amplificó mediante PCR fragmentos de genes marcadores que le permitieron identificar su naturaleza. El resultado: algas rojas. Esto demuestra que Ostreopsis es mixótrofo y puede alimentarse de dichos organismos. La cuestión es cómo…

La segunda charla presentó un descubrimiento rompedor: la producción de vesículas extracelulares en dinoflagelados a cargo de Esther Garcés (ICM-CSIC, Barcelona, España).

Esther Garcés al comienzo de su charla sobre las vesículas extracelulares. Autor: F. Rodríguez.

En 2014 Biller y col., del laboratorio de Sallie W. Chisholm, demostraban por primera vez la liberación de dichas vesículas en microorganismos marinos (cianobacterias de los géneros Prochlorococcus y Synechococcus), con presencia de proteínas que aportarían quizás una fuente de alimento a otros microorganismos.

Asimismo también establecieron que esas diminutas estructuras esféricas (100 nm) poseían ADN y ARN, así que podrían suponer un mecanismo para la transferencia de genes, etc.

Su descubrimiento en dinoflagelados por parte de Esther Garcés y col. abre un campo nuevo de estudio en las microalgas tóxicas rebosante de cuestiones acerca de su papel en la ecología y dinámica de poblaciones, incluyendo patogenicidad, resistencia a infecciones, fuente de nutrientes, evolución y adaptación al medio…quien sabe!

La tercera charla mereció los aplausos del público durante la misma: tal fue el éxito que incluso le pedimos un bis al conferenciante para que volviese a poner «ése vídeo del que todos hablan» que tanto nos impresionó.

Heterocapsa circularisquama HCLG-1 infectada por el virus HcRNAV109. Microscopio electrónico de transmisión (A) Célula sana mostrando el núcleo (N), cloroplastos (Ch) y pirenoides (Py). (B) 48 h después de la infección con viroplasma (VP) y degradación de orgánulos. (C, D) el virus HcRNAV109. Fuente: Tomaru y col. (2004).

K. Nagasaki (Kochi University, Kochi, Japón) demostró que es posible aislar manualmente! el núcleo de un dinoflagelado nocivo (Heterocapsa circularisquama) infectado por virus.

El vídeo formaba parte de un trabajo todavía sin publicar y fue uno de los revisores quien solicitó una evidencia visual sobre lo que aseguraban haber conseguido: aislar el núcleo de Heterocapsa con una micropipeta de vidrio.

Sin palabras. Solo aplausos.

Y por si fuera poco, las imágenes de microscopía de barrido que mostró K. Nagasaki con las células de Heterocapsa infectadas y el detalle de los virus fueron igualmente impactantes por su detalle y calidad. Im-pre-sio-Nantes.

Para terminar, entre los premios que se entregaron destacaré uno en particular.

Beatriz Reguera, de nuestro grupo de investigación del IEO de Vigo, recibió el premio Yasumoto que reconoce su contribución a lo largo de la carrera profesional al conocimiento sobre algas nocivas y ficotoxinas, así como los servicios prestados a la ISSHA.

Y con esta imagen de grupo al término de la conferencia les dejo. Espero que les haya interesado y aprovecho para desearles Felices Fiestas y Año Nuevo.

Nos vemos en 2019.

Referencias:

-Biller S.J. y col. Bacterial Vesicles in Marine Ecosystems. Science 343:183-186 (2014).
-Glaizal M. y col. Ciguatera contracted by French tourists in Mauritius recurs in Senegal. Clinical Toxicology 49(8):767 (2011).
-Selander E. y col. Predator lipids induce paralytic shellfish toxins in bloom-forming algae. PNAS 112(20):6395-400 (2015).
-Songhui L. Phaeocystis globosa: a giant colonial harmful species in the WESTPAC waters. WESTPAC HAB Workshop 2016. Disponible en iocwestpac.org
-Tomaru Y. y col. Isolation and characterization of two distinct types of HcRNAV, a single-stranded RNA virus infecting the bivalve-killing microalga Heterocapsa circularisquama. Aquat. Microb. Ecol. 34(3):207-218 (2004).

 

Fútbol y Ciencia

El 10 de octubre publiqué un tweet (@Lilestak) mostrando los presupuestos de equipos de fútbol y organismos públicos de investigación en España, Francia y Alemania. Ha provocado tantos comentarios e impacto que he decidido escribir esta entrada para confirmar que los datos son fiables y proceden de fuentes oficiales.

Fuente: Diario AS

Me gusta el fútbol y sigo tanto la liga española como las competiciones europeas. Nadie ignora que desde hace años los clubes españoles triunfan en Europa. De las últimas 15 ediciones, 8 Champions League las han celebrado en Cibeles y Canaletas. En la Europa League, 9 de 15 se han venido también para España. Si sumamos un título menor, las Supercopas de Europa (11 de 15), los equipos españoles han ganado el 62% de los títulos europeos desde 2003-04.

En España hay tradición y afición al fútbol pero estos resultados no dejan de ser sorprendentes.

O no tanto si vemos el presupuesto de dichos equipos y las estrellas internacionales que juegan en ellos.

Trabajo como científico titular en el IEO, un organismo público de investigación (OPI) aquejado de una seria crisis institucional, junto a otros problemas comunes al resto de OPIs. Esto ha llevado en 2018 a la difusión de manifiestos en defensa de los OPIs por parte de los trabajadores, y otras acciones en las que hemos denunciado la gravedad de la situación con amplia difusión en los medios de comunicación.

No profundizaré más en el tema. Para quien quiera hacerlo le recomiendo, p.ej., los reportajes de «La crisis de la ciencia española» en El País.

Tampoco entraré en detalles sobre las circunstancias que atraviesan otros actores del sistema público de I+D+i (CSIC y Universidades) porque las desconozco pero también soportan lo suyo. Contrariamente a lo que pueda parecer el dinero ayudaría pero no lo solucionaría todo ni mucho menos porque los problemas son estructurales.

La gestión y la organización de los recursos materiales y las personas en el sector público, al que pertenecen los organismos de investigación de los que he hablado, es francamente mejorable (excesiva burocratización, disminución y envejecimiento de las plantillas, carrera profesional estancada para los niveles técnicos y un largo etc). Los que estamos dentro del sistema lo sabemos y consideramos que nuestro deber es denunciar lo que percibimos que no funciona.

Para que la situación de la ciencia mejore en este país es necesario tomar medidas urgentes desde el gobierno y las propias instituciones.

Santiago Ramón y Cajal (izda.) y Severo Ochoa (dcha.). Fuente: cronicaglobal.elespanol.com

Ahora que tenemos un Ministerio de Ciencia, Innovación y Universidades soplan vientos (o brisas) de optimismo, pero las circunstancias políticas y económicas, y España no es ninguna excepción, no cambian de un día para otro. Quizás esto explique que España sólo tenga 2 premios Nobel científicos (en Medicina): Santiago Ramón y Cajal (1906) y Severo Ochoa (1959). O que ningún extranjero trabajando en laboratorios españoles lo haya conseguido.

En todo esto pensaba el 10 de octubre cuando se me ocurrió retomar una idea que me rondaba hace tiempo la cabeza. El éxito del fútbol y la crisis de la ciencia en España: sus cifras económicas como indicador del modelo de país en el que vivimos.

Así que recopilé los datos sobre los presupuestos (en millones de euros) de los 10 mayores equipos de la «Liga Santander» (2017/18). Y luego los correspondientes a los presupuestos del CSIC, el principal organismo de investigación de este país, junto a los de OPIs.

He de confesar que la comparativa salió peor de lo que esperaba!

Autor: F. Rodríguez (@Lilestak). Fuente de los datos: referencias al final de la entrada.

No contento con ello, en vez de mirar sólo al ombligo propio decidí comparar esta imagen con la de nuestros vecinos Francia y Alemania, con ligas de fútbol y equipos importantes, que atesoran sistemas de ciencia líderes en Europa y en el mundo. No fue difícil recopilar esos datos (de 2018 y en algunos casos 2017: ver referencias) y confrontarlos con los de España.

Y qué deprimente fue vernos al lado de ellos.

Para los más incrédulos (me hago cargo de que parecen increíbles), las fuentes de los datos están citadas al final de esta entrada. El gráfico es el mismo que publiqué en twitter. Sólo he añadido al INIA tal y como recordaba @eexposito1971 (53.5 M€) y al revisar las fuentes he actualizado datos de presupuestos con valores más recientes (de 2017 para Leibniz e INRIA, y 2018 para INSERM y Helmholtz).

El impacto en twitter ha sido enorme, mucho mayor de lo esperado. Y me alegro de que haya agitado conciencias igual que me sucedió a mí. Escogí el fútbol porque es una vara de medir que todos entendemos tal y como comentaba un tweet de @rmegiasrda.

También ha habido comentarios sobre la necesidad de igualar los ejes verticales, y aquí tienen esa segunda versión del gráfico…

Autor: F. Rodríguez (@Lilestak).

Creo que el contraste es tan demoledor que nadie, aunque podamos criticar las escalas y la proporcionalidad de los gráficos, puede dejar de sorprenderse al ver como FC Barcelona y Real Madrid golean al CSIC en España, mientras que los presupuestos de la Bundesliga alemana y la Ligue 1 francesa apenas despuntan al lado de los principales organismos públicos de investigación.

La Premier League es la primera potencia económica de las ligas de fútbol, pero aún así los presupuestos del UK Research & Innovation ascienden a 6.000 M£, multiplicando por diez (o más) a los denominados como «Big Six»: Manchester United (655M€), Manchester City (548M€), Chelsea (472M€), Arsenal (417M€), Liverpool (361M€) y Tottenham (288M€).

Con la publicación de los gráficos no pretendía plantear un falso dilema, fútbol (privado) vs ciencia (pública). No son excluyentes ni comparables. Pero llama mucho la atención comprobar de esta forma tan evidente el peso relativo de ambos asuntos entre dichos países.

Fuente de los datos: IEE-Eurostat. Autor: Idealista.com

Una de las mayores críticas que ha recibido el gráfico (@davidmasp) es que la comparación debería hacerse en relación al PIB de cada país.

España invierte un 1.2% del PIB en I+D, mientras que la media de la UE es del 2%. Reino Unido invierte 1.7%, Francia 2.2% y Alemania 2.9%. Ocupamos el puesto 17 dentro de la UE. Aún corrigiendo los gráficos según el PIB, esto seguiría sin tener un pase!

¿Qué piensan ustedes de todo esto? Yo al menos me sentiría más identificado con un país donde la investigación ocupase el lugar que se merece. 

Esta comparación tan sencilla entre el peso económico del fútbol y la ciencia de cada país es un signo más de que la investigación recibe un apoyo mucho más sólido por parte de gobiernos como Francia y Alemania, que reconocen la importancia de la ciencia para el presente y el futuro de sus países, mientras que en España la tibieza y desidia de los sucesivos gobiernos han dejado la ciencia en un estado deplorable e incluso eliminado un ministerio específico del mapa político en algunas legislaturas.

Fuente: Filmaffinity.

La comparativa me ha hecho recordar la famosa frase que todos hemos escuchado alguna vez en este país: «como en España no se vive en ningún sitio«. Se la decían al personaje de Carlos Iglesias al final de la película «Un franco 14 pesetas» (2006), acerca de los emigrantes españoles en Suiza y su cara era todo un poema, claro. 

Queridos gobernantes: la ciencia española no os importa o al menos no lo demostráis. Tampoco parece que os afecten las causas (ni las consecuencias) de la fuga de jóvenes investigadores y profesionales cualificados al extranjero, muchos de ellos formados en universidades públicas, que se integran en instituciones extranjeras de mayor envergadura que las nuestras y ofrecen la posibilidad de desarrollar una carrera científica que muchas veces se les ha negado.

No nos engañemos, ahí fuera también es difícil y a nadie le regalan el trabajo.

Pero si España invirtiese proporcionalmente al PIB lo mismo que Francia, Alemania o Reino Unido, seguiríamos presumiendo de fútbol por Europa, pero además tendríamos un país más moderno, generador de riqueza y de empleo de calidad, que atraería no sólo a millones de turistas, que está muy bien, sino que disfrutaría de una economía más próspera y un mayor bienestar de las personas. Y menos frustración para una generación que se ha formado con toda la ilusión y el esfuerzo del mundo sin el soporte adecuado para continuar una carrera profesional digna y acorde con su titulación académica.

Referencias:

Para el fútbol:
-Presupuestos «La Liga» 2017/18 (Diario As)
-Presupuestos «Ligue 1» 2018/19 (L’équipe)
-Presupuestos «Bundesliga» 2018/19 (Foxdeportes)
-Presupuestos «Premier League» 2017/18 (sportune.fr)
Para los organismos de investigación:
España:
-RTVE (03-IV-2018) «Los Presupuestos destinan 6.366 millones para ciencia este año, el 5,4% más que en 2017»
Francia:
-Presupuesto CNRS 2018 (cnrs.fr)
-Presupuesto CNES 2018 (cnes.fr)
-Presupuesto INSERM 2018 (inserm.fr)
-Presupuesto INRA 2018 (inra.fr)
-Presupuesto INRIA 2017 (inria.fr)
-Presupuesto IFREMER 2018 (ifremer.fr)
Alemania:
-Presupuesto Helmholtz Association 2018 (helmholtz.de)
-Presupuesto Leibniz Association 2017 (leibniz-gemeinschaft.de)
-Presupuesto Max Planck 2017 (mpg.de)
Reino Unido:
-Presupuesto UK Research & Innovation 2018 (ukri.org)