La banda amarilla del Everest

Imagen de portada: La cumbre del Everest [Fuente: Pinterest].

Alfred Wegener presentó en 1912 su hipótesis sobre la deriva de los continentes, décadas antes de comprender los mecanismos que la regían y de que se enunciase la teoría de la tectónica de placas.

Epicentros de terremotos. Autor: NASA. Fuente: denali.gfsc.nasa

Las zonas de colisión entre placas son «puntos calientes» de actividad sísmica y a lo largo de ellas se distribuyen los epicentros de los seísmos más importantes registrados en el planeta.

El choque entre placas es responsable también de las simas oceánicas más profundas y del levantamiento de cordilleras como la americana (desde Norteamérica hasta los Andes), los Alpes, el Atlas y el Himalaya.

Esta última formación surgió tras la colisión entre la placa India y la Euroasiática hace 55 millones de años.

La placa India llegó desde el sur, separándose de la africana y antártica, a medida que el lecho del antiguo mar de Tetis se hundía bajo la corteza continental.

Placas tectónicas mayores. Fuente: USGS

La colisión de placas dejó tras de sí el actual océano Índico levantando de paso la cordillera más elevada del mundo. Pero el mar de Tetis no desapareció sin dejar rastro.

Porque el Himalaya surgió precisamente por la elevación de su lecho. Las rocas más densas de la corteza oceánica se hundieron en los límites entre placas pero aquellas más ligeras, cargadas de sedimentos y fósiles marinos, se elevaron.

Sobre ellas actuaron presiones enormes que las transformaron en rocas metamórficas en distinto grado (debido al calor por la presión y el engrosamiento de la corteza). Así se formó el Himalaya…

Para ilustrarlo mejor vamos a utilizar el Everest (Qomolangma en tibetano o Sagarmatha en nepalí).

Los minerales que integran su base soportaron mayor presión y temperatura por lo que se fundieron eliminando cualquier resto de fósiles marinos. Se trata de rocas metamórficas como esquistos, gneis y granito.

Sin embargo, en niveles superiores (desde unos 6.900 metros de altitud y hasta la cumbre del Everest) se conservaron fósiles de hasta 400 millones de antigüedad. Depósitos marinos que hoy contemplan el mundo desde su mismo techo. Del lecho al techo, si me permiten el chiste malo.

Principales formaciones rocosas del Everest. YB es la banda amarilla (Yellow Band). Fuente: volcanocafe y earthsciences.

En una cota por encima de 8.000 metros, se encuentra la banda amarilla del Everest. En 2005 un grupo de investigadores japoneses publicaron un estudio sobre la geología de su cumbre y de la banda amarilla.

Aprovecharon que uno de los coautores había coronado el Everest y recogido preciosas muestras hasta sólo 6 metros de la cima (y no en ella porque se encontraba cubierta de hielo).

La disposición de estratos en la banda amarilla sugiere que los sedimentos calizos que la formaron se depositaron en una plataforma continental bastante inclinada. Su grosor es de 172 metros.

La banda amarilla está formada por arenisca sedimentaria de fondos marinos someros, que se transformó en distintas rocas metamórficas: mármol, filita (con moscovita y biotita), y semi-esquistos.

Debido al metamorfismo la banda amarilla no conserva apenas fósiles, pero a pesar de ello se aciertan a distinguir rastros de crinoideos, ostrácodos, braquiópodos y trilobites.

Clases de microbialitos según su entramado interno. Fuente: Riding (2011).

Sobre la banda amarilla se encuentra el último estrato: caliza prácticamente inalterada con fósiles de ostrácodos, trilobites y crinoideos en un lecho sedimentario de unos 60 metros de grosor, formado por trombolitos. ¿Hein? ¿trombo-qué?

Traducción de trombolito: sedimentos atrapados en un biofilm de cianobacterias. Sí, han leído bien. La cumbre del Everest, el techo del mundo, alberga estructuras originadas por cianobacterias marinas.

Los trombolitos son un tipo de microbialito: depósitos organo-sedimentarios, generalmente de carbonato cálcico.

Estromatolitos (Shark Bay, Australia). Fuente: lifeder.com

Quizás les suenen otras estructuras relacionadas, los estromatolitos.

Ambas se diferencian en que los estromatolitos tienen estructuras laminadas en su interior mientras que los trombolitos son irregulares, grumosos.

Los estromatolitos son los fósiles más antiguos del mundo, las primeras evidencias de vida sobre La Tierra (3500 millones de años).

Trombolitos fósiles en Flower’s Cove (Terranova, Canadá). Fuente: tripadvisor.

Su abundancia y diversidad se redujeron enormemente desde los últimos 1000 m.a. y hoy en día para contemplarlos «vivos» hay que subirse a un avión con destino a Australia o Bahamas.

Los trombolitos aparecen más tarde en el registro fósil (desde hace 1200 m.a.), y además de los que coronan el Everest podemos admirar restos fósiles a nivel del mar en lugares como Terranova (Canadá) o Almería (España).

Los trombolitos «vivos» son escasos hoy en día y se encuentran en lagos salobres de Australia y en Columbia Británica (Canadá).

¿Cómo se forman los trombolitos?

Para empezar, las cianobacterias no son organismos que fabriquen estructuras calcáreas de manera obligatoria (como los cocolitofóridos, p.ej.).

Provocan la precipitación de carbonatos al absorber CO2 durante la fotosíntesis, y el resultado final depende de que las condiciones ambientales sean favorables (alto estado de saturación del carbonato en el agua), así como de las tasas de precipitación, sedimentos depositados y la comunidad microbiana del biofilm.

Formación de cristales de carbonato cálcico en cianobacterias filamentosas. Fuente: Riding (2011).

La calcificación en cianobacterias es extracelular.

Los cristales de carbonato se forman en la vaina mucilaginosa que protege a las células debido a la absorción activa de bicarbonato (HCO3).

Este se transforma intracelularmente en CO2, liberando hidroxilos (OH) al medio.

Dicho proceso aumenta el pH alrededor de las células induciendo la precipitación de carbonato cálcico (tal como muestra la figura anterior).

Scytonema. Fuente: conncoll.edu

La aparición de trombolitos en el registro fósil coincide con una caída significativa en los niveles de CO2 hace 1200 m.a. y el consiguiente desarrollo de mecanismos de concentración de CO2 en cianobacterias, responsables del proceso de absorción activa de bicarbonato.

¿Qué cianobacterias los forman?

En los trombolitos modernos encontramos cianobacterias filamentosas como Scytonema.

Y entre los fósiles destacan Angusticellularia, Botomaella y Girvanella.

Volviendo al Everest para terminar…

(a-d) microfotografías de rocas en la cima del Everest. (e-f) en la banda amarilla. Fuente: Sakai y col. (2005).

Para ilustrar los fósiles marinos de la cumbre y el metamorfismo en la banda amarilla, lo mejor es una imagen de las muestras recogidas por Mr. Sawada ¡¡el intrépido investigador que se ganó con creces la firma como coautor de Sakai y col. (2005)!!

En ella pueden observar restos de crinoideos (C), trilobites (T), ostrácodos (O) y pellets fecales (P), en rocas de la cima (a-d).

Y en contraste las muestras de la banda amarilla (e-f), alteradas por el metamorfismo (e: mosaico de calcita; f: cuarzo-moscovita).

Referencias:

-Riding R. Calcified cyanobacteria. Encyclopedia of Geobiology. Encyclopedia of Earth Science Series, Springer. pp. 211-223 (2011).

-Riding R. Microbialites, Stromatolites and Thrombolites. Encyclopedia of Geobiology. Encyclopedia of Earth Science Series, Springer. pp. 635-654 (2011).

-Sakai H. y col. Geology of the summit limestone of Mount Qomolangma (Everest) and cooling history of the Yellow Band under the Qomolangma detachment. The Island Arc 14:297-310 (2005).

(Visited 374 times, 1 visits today)
0 comentarios

Dejar un comentario

¿Quieres unirte a la conversación?
Siéntete libre de contribuir

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *