El blanqueamiento del nori

Imagen de portada: «Tostando una lámina de nori» (1864). Autor: 歌川国貞

Cultivar macroalgas para consumo humano es un concepto poco común en la cultura occidental. Relacionamos las algas con productos cosméticos, industria farmacéutica o aditivos alimentarios pero (con permiso del sushi) rara vez incluimos un plato con algas «visibles» en nuestro menú.

Puesto de venta en Puerto Natales (Chile) con algas secas (Cochayuyo: Durvillaea antarctica y Luche: Pyropia spp.). Autor: F. Rodríguez

Y sin embargo, 6 de los 7 billones de US$ que supone el mercado mundial de algas corresponden a la alimentación.

El sureste asiático concentra la práctica totalidad de su producción (99,6%), liderada por China, Indonesia, Filipinas, las dos Coreas y Japón.

Otro asunto es la captura de ejemplares salvajes, con Chile a la cabeza (42%), seguido de China (28%) y otros países en menor proporción como Canadá, Francia, etc.

Las algas forman parte habitual de la dieta en países asiáticos como Japón, donde el consumo de nori está documentado desde el s.VIII, aunque su cultivo data del siglo XVI y la elaboración de nori en láminas procede del s.XVIII, durante el período Edo (1603-1868). Sí, el de las estampas japonesas ukiyo-e como la gran ola de Kanagawa.

Ilustraciones originales de Pyropia californica (Fig. 5a-d). Autor: Agardh (1899). Fuente: Biodiversity Heritage Library.

El producto que conocemos como nori –y que sirve para elaborar los rollitos de sushi– consiste en láminas secas de algas rojas antes incluidas en el género Porphyra, como P. yezoensis y P. tenera. Esta clase de nori supone ∼30% de la producción acuícola de algas en Japón.

Sutherland y col. (2011) rebautizaron la mayoría de especies de Porphyra en base a datos genéticos transfiriéndolas a Pyropia, un antiguo género creado por J. Agardh (1899) para Pyropia californica.

A menudo leemos o escuchamos sobre el blanqueamiento y la muerte del coral debido al aumento de temperatura en el mar. Pero en países asiáticos como Japón también preocupan las consecuencias de otro tipo de blanqueamiento: el del nori.

Se trata de un fenómeno completamente distinto, del que son responsables las diatomeas, y que se ha ido agravando en algunas zonas de producción con la mejora de las condiciones ambientales.

Sorprendente, ¿verdad? Pues aquí tienen la explicación.

El mar interior de Seto, en el sur de Japón, es una de las zonas más industrializadas y pobladas del país con 30 millones de habitantes, que además concentra una intensa actividad acuícola ligada al pescado, marisco y las algas.

Cultivos de ostras en el mar interior de Seto. Fuente: Alamy

La presión antropogénica provocó la eutrofización del mar de Seto y ese exceso de nutrientes –positivo para el cultivo de macroalgas– conllevó también desde los 60′ un aumento exponencial de las proliferaciones tóxicas e ictiotóxicas de fitoplancton («fish killer algae«), así como otras no tóxicas pero nocivas porque la descomposición masiva de sus mareas rojas consume y puede agotar el oxígeno del agua.

Dichos blooms alcanzaron su «máximo esplendor» en 1976, con 299 proliferaciones !!

Las autoridades promulgaron en 1973 una ley especial para el mar de Seto con la intención de atajar el desastre socioeconómico y medioambiental.

Fuente: Abo y col. (ICES CM2012/Q:16). Fuente: ICES.

Y fue bastante efectiva: las descargas de compuestos orgánicos con alta Demanda Química de Oxígeno (DQO, indicador de contaminantes) se redujeron a menos de la mitad en 1997 y continúan bajando hasta el presente. También las proliferaciones nocivas de fitoplancton: unas 100 al año.

Aunque la caída de nitrógeno inorgánico disuelto ha conllevado un descenso paralelo en la producción de nori.

Entre las especies de fitoplancton nocivas en el Mar de Seto destacaban -y destacan- dinoflagelados como Karenia mikimotoi, Heterocapsa circularisquama, Margalefidium polykrikoides y rafidofíceas de los géneros Chattonella y Heterosigma.

Coscinodiscus sp. Imagen de microscopía electrónica de barrido (CACTI, UVIGO). Autor: F. Rodríguez.

Pero dichos organismos no son los culpables del deterioro y blanqueamiento del nori, sino las proliferaciones entre otoño y primavera de diatomeas como Chaetoceros, Eucampia, Coscinodiscus, Thalasiossira, Skeletonema y Rhizosolenia.

El mismo problema sucede en otro mar cercano, el de Ariake, esta vez por culpa de proliferaciones invernales de la diatomea Asteroplanus karianus.

Si bien el descenso de nutrientes ha disminuido las proliferaciones y mareas rojas de rafidofíceas y dinoflagelados, en contrapartida las diatomeas han progresado gradualmente en algunas regiones del mar de Seto como Harima-Nada. 

En los 80′ eran los blooms de Coscinodiscus wailesii pero a mediados de los 90′ se unió una nueva invitada a la fiesta: Eucampia zodiacus. Las diatomeas «florecen» en Harima-Nada entre enero y abril, cuando las condiciones de nutrientes y turbulencia en la columna de agua son adecuadas para el crecimiento de sus poblaciones.

Gracias a la ley de 1973 se redujo el aporte de nutrientes antropogénicos, y al mismo tiempo la temperatura media ha aumentado en el mar de Seto 0.042 °C al año entre 1974-2008. Puede parecer poco pero si multiplican por 35 años el resultado es 1,5 °C. Y el aumento de temperaturas e inviernos más suaves también benefician a las diatomeas.

Eucampia zodiacus. Fuente: Phytopedia.

Sus proliferaciones son como el caballo de Atila: por donde pasan no crece la hierba, bueno en este caso el nori, porque compiten eficazmente por los nutrientes. Llegan a agotarlos durante la época de cultivo y cosecha del nori, afectando a su crecimiento y provocando su deterioro y blanqueamiento, con serios perjuicios económicos.

Los blooms de E. zodiacus en Harima-Nada han agravado el problema convirtiéndose en la causa principal de blanqueamiento del nori.

Sin embargo, existe una característica del ciclo de vida en las diatomeas que podría servir para predecir su proliferación, gestionar mejor el cosechado del nori y reducir el impacto del blanqueamiento.

La reproducción asexual en las diatomeas reduce a lo largo del año el tamaño promedio de las células. Cuando alcanzan un umbral mínimo de talla se induce la reproducción sexual y en el caso de Eucampia zodiacus y Harima-Nada se ha observado que la población recupera su talla máxima en otoño.

Pues bien, Nishikawa & Imai (2011) descubrieron una correlación negativa entre la abundancia de E. zodiacus en otoño (en promedio desde la fecha donde aparecen las primeras células grandes hasta la recuperación de la talla máxima de la población) y el período en días hasta el bloom de invierno/primavera, responsable del blanqueamiento del nori.

Evolución del tamaño celular de Eucampia entre 2002-2008 en una estación en Harima-Nada (mar de Seto). Fuente: Nishikawa & Imai (2011).

Suena lógico: a menor población inicial, menor inóculo y más tardarán en proliferar las diatomeas (entre 50-150 días en función del año).

Y el dato de interés para comenzar la cuenta atrás del bloom lo señala como un reloj el regreso a la talla máxima de Eucampia, en concreto la fecha en la que la proporción de células pequeñas vs. grandes es 1:1.

Para terminar les mencionaré una de las medidas de prevención del blanqueamiento del nori (adecuada según modelos matemáticos) en algunas zonas de producción: vertidos locales de aguas residuales desde plantas depuradoras. En fin…

Referencias:

-Imai I & col. Eutrophication and occurrences of harmful algal blooms in the Seto Inland Sea, Japan. Plankton Benthos Res. 1: 71-84 (2006).
-Nayar S & Bott K. Current Status of Global Cultivated Seaweed Production and Markets. World Aquaculture, pp. 32-37 (June 2014).
-Nishikawa T & col. Nutrient and Phytoplankton Dynamics in Harima-Nada, Eastern Seto Inland Sea, Japan During a 35-Year Period from 1973 to 2007. Estuaries and Coasts 33:417-427 (2010).

La gran ola de Kanagawa. Autor: Katsushika Hokusai (1826-1833). Fuente: Wikimedia Commons.

-Nishikawa T & col. Long time-series observations in population dynamics of the harmful diatom Eucampia zodiacus and environmental factors in Harima-Nada, eastern Seto Inland Sea, Japan during 1974–2008. Plankton Benthos Res. 6: 26-34 (2011).
-Nishikawa T & col. Prediction of the occurrence of bleaching in aquacultured «nori» by the harmful diatom Eucampia zodiacus. Nippon Suisan Gakkaishi 77:876-880 (2011).
-Shikata T & col. Effects of temperature, salinity, and photosynthetic photon flux density on the growth of the harmful diatom Asteroplanus karianus in the Ariake Sea, Japan. Fish. Sci. 81:1063-1069 (2015).
-Sutherland JE & col. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J. Phycol. 47:1131-1151 (2011).
(Visited 231 times, 1 visits today)
2 comentarios

Dejar un comentario

¿Quieres unirte a la conversación?
Siéntete libre de contribuir

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *