Entradas

El polen del mar

Manchas de polen frente al IEO de Vigo. Autor: F. Rodríguez

El 8 de abril contemplamos unas manchas amarillas en el mar, a pocos metros de nuestro laboratorio en Vigo.

Así que hice algunas fotos mientras que Pilar Rial, técnico de nuestro departamento, se adelantaba por curiosidad a recoger muestras de agua.

Regalos así, caídos del cielo, no pueden faltar en este blog…!!

La mancha de polen ampliada y un grano de polen recogido en la misma zona,
visto a 400 aumentos. Autor: F. Rodríguez

En el microscopio confirmamos que se trataba de polen de pino. En las últimas semanas cualquier superficie exterior estaba salpicada de un pertinaz polvo amarillo, aunque en el mar no recordaba haber visto nunca manchas como estas.

En La Voz de Galicia publicaron hace unos días imágenes espectaculares de nubes de polen sobre los pinares. En Galicia los pinos son más abundantes en el sur (Orense y Pontevedra) y los niveles máximos de su polen se concentran entre marzo y abril. El polen de pino es poco alergénico, posee dos sacos aeríferos y los granos que observamos tenían unas dimensiones máximas de 90×50 micras (=milésimas de milímetro).

Si algún ciudadano desea conocer los niveles actuales y el tipo de polen en la provincia de Pontevedra lo lleva crudo. Los recortes en la Xunta de Galicia se llevaron por delante a la red gallega de aerobiología en 2011, cuyos análisis se realizaban en la Facultad de Ciencias de la Universidad de Santiago de Compostela desde 1993 (La Voz de Galicia, 3-abril-2011).

Supongo que nuestras autoridades decidieron que no era prioritario mantener este servicio de alerta público, a pesar de que facilitaba datos útiles tanto a los especialistas sanitarios como a los afectados por alergias al polen, que somos cerca de 8 millones en España…(en mi caso a las gramíneas).

Las redes de aerobiología (ó palinología) funcionan de manera muy desigual en nuestro país: hay comunidades autónomas con datos muy completos como Madrid y Cataluña. También existen webs muy bonitas –pero sin información de niveles de polen– como la de Castilla-La Mancha. Las series temporales de niveles de polen se pueden consultar en la web polenes.com del Comité de Aerobiología de la SEAIC (Sociedad Española de Alergología e Inmunología Clínica) ó en la Red de Aerobiología de España (REA). En la web de la SEAIC se muestra un mapa de España con enlaces a cada provincia, aunque no siempre existen datos ó la serie se interrumpió años atrás…

Pronóstico del polen para la primavera de 2015. Autor: SEAIC.
Fuente: El tiempo.com

En resumen: hay que bucear por fuentes y webs diversas para encontrar los datos que te interesan, y en ningún caso existen resultados actualizados para todas las provincias (ni mucho menos).

La SEAIC, junto a la farmacéutica Almirall, desarrolló una aplicación para móviles llamada Alergo Alarm, pero ya no está operativa y fue sustituida por otras como Polen Control (Almirall) y Alerta Polen (AstraZéneca), que también utilizan los datos recogidos por la red SEAIC.

Fuente: VShare market

Instalé Polen Control en mi móvil, pero tal y como esperaba no me sirvió de nada porque no hay datos públicos de polen para la provincia de Pontevedra, ni para el resto de Galicia.

Me dirigí por último a la web de la SGAIC (Sociedad Gallega de alergología e imunología clínica), para confirmar que el enlace a los niveles de polen conduce a una web inexistente.

«Vivamos como galegos» dice la publicidad y yo les invito a vivir de otra manera (no sé si mejor) y visitar las redes de aerobiología de Portugal y Francia, dos vecinos que nos dan sopas con onda en cuanto al seguimiento del polen.
La de Francia es espectacular, con datos de la composición y niveles de polen en casi todos los departamentos (equivalen a nuestras provincias).

La lluvia limpia de polen el aire, por eso está tan contenta.
Premio nacional de publicidad en 2014. Fuente: Gadisa



La palinología es la ciencia que estudia partículas diminutas como el polen y las esporas (pertenecientes a helechos, algas, musgos y hongos).
El polen y las esporas permiten trazar la aparición y evolución de las plantas terrestres. Los granos de polen más antiguos, hasta el momento, tienen unos 470 millones de años y se encontraron en Argentina (Rubinstein y col. 2010).

La conservación del polen en el registro fósil se debe a la esporopolenina, un biopolímero extremadamente inerte que forma parte de su cubierta exterior (exina) y del cual se desconocen su composición y estructura precisas. El motivo es que tanta estabilidad química dificulta enormemente su análisis.

Quiste del dinoflagelado Protoperidinium conicum.
Autora: Isabel Bravo.

En lo que respecta a las algas, las formas de resistencia ó quistes de los dinoflagelados poseen también una cubierta muy resistente.

Por analogía con el polen se creía que podían contener esporopolenina. Error: en realidad se trata de un biopolímero diferente, la dinosporina, más cercana a la celulosa aunque tampoco se ha llegado a caracterizar su estructura.

Acritarco (Visbysphaera) del Silúrico (Gotland, Alemania).
Autor: Munnecke y col. 2012. Fuente: FAU.

Los quistes actuales pueden germinar y así revelar a la especie que los produce.

Pero existen unos microfósiles llamados acritarcos, formados por una sustancia similar a la esporopolenina, que no se corresponden con ningún organismo actual.
Los acritarcos más antiguos tienen entre 1.600 y 1.900 millones de años. Siempre aparecen en rocas de origen marino y su tamaño suele estar entre 15-80 micras, lo cual apunta a organismos unicelulares, seguramente microalgas.

Sus formas son variadas y algunas de ellas han sido luego reconocidas como algas verdes, por ejemplo prasinofíceas (Tasmanites).

Los acritarcos tienen marcas con distintos tipos de aberturas (circulares, lineales, en dos mitades, etc), indicando que algo salió de ahí y una de las hipótesis más extendidas es que podrían ser quistes de dinoflagelados.

Sin embargo, esta teoría tiene un problema: los primeros quistes con todas las características de los dinoflagelados aparecieron en el Triásico (250-200 millones de años), coincidiendo con la desaparición de los misteriosos acritarcos en el registro fósil…

Autor: Xulio Valeiras.

Addendum
Mi colega Xulio Valeiras (IEO, Vigo) me envió esta imagen tomada en el Golfo de Vizcaya en 2007 durante una campaña de pesca (proyecto PELACUS, a bordo del Thalassa), con una enorme mancha de polen seguramente también de pinos. Y que quizás pudo provenir de los extensos pinares de las Landas francesas.

Referencias:
-Bravo I & Figueroa RI. Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms 2:11-32 (2014).
-Rubinstein CV y col. Early Middle Ordovician evidence for land plants in Argentina (Eastern Gondwana). New Phytologist 188:365-369 (2010).
-Traverse A. Paleopalinology, 813 pp. (2007).
-Web: Miracle (London’s Global University).

Enterrados vivos

Una experta en hibernación:
la marmota.

Muchos seres vivos pasan por periodos de dormancia a lo largo del año para sobrevivir a épocas con poco alimento ó bajas temperaturas…como las marmotas, que hibernan desde antes del invierno hasta la primavera.

Esto supone una ventaja adaptativa y se ha relacionado en mamíferos con su capacidad para sobrevivir al impacto del meteorito de Chicxulub que acabó con los dinosaurios y el 75% de la vida hace 65 millones de años.

En las microalgas también existen células en estado de vida «suspendida». En particular en los dinoflagelados y diatomeas, que alteran su forma y reducen su actividad para convertirse en «bellas durmientes» en el fondo del mar.
Arriba: células vegetativas de la diatomea Chaetoceros radians. Abajo, las esporas
de resistencia de la misma especie. Disponible en http://micro.sakura.ne.jp/bod/marine.htm

En el caso de las diatomeas forman esporas de resistencia que pueden ser parecidas ó distintas a las células «normales». Esas esporas acumulan reservas de energía antes de hundirse en el sedimento, a la espera de que las condiciones ambientales cambien (más luz, nutrientes, temperatura…) y poder retomar su vida.

Los dinoflagelados por su parte, tienen formas de resistencia también llamadas «quistes», que pueden ser de varios tipos.Los quistes temporales son formas de transición en respuesta a estrés ambiental y su duración es breve. Por ejemplo, al aislarlos en el laboratorio, muchos dinoflagelados tecados forman este tipo de quistes en los que la célula se libera de sus placas de celulosa y se convierte en una forma cocoide inmóvil.

Pyrocystis. Autor: F. Rodríguez

Los quistes vegetativos, aunque inmóviles, son activos metabólicamente. En algunos dinoflagelados incluso son la forma más habitual en su ciclo de vida, como por ejemplo en Symbiodinium (dinoflagelados simbiontes que viven en los corales), ó en el hermoso género de vida libre Pyrocystis.

En cambio, los quistes de reposo se forman tras la fusión sexual de dos células y pueden permanecer latentes durante años y décadas. Si nadie perturba su «sueño», los quistes seguirán enterrados vivos en el sedimento, y esto sucede en las zonas costeras de casi todo el planeta. Luego, al despertar de forma simultánea estos quistes pueden servir como la «mecha» que dispare una proliferación de dinoflagelados, aparentemente desde «la nada».

 

Quiste «Spiniferites» típico del
género de dinoflagelados Gonyaulax.
Imagen: Graham Williams.

Aunque también pueden seguir enterrados para siempre jamás. Dado que su cubierta celular es muy resistente el registro fósil conserva numerosos quistes de dinoflagelados desde hace 200 millones de años.

Hasta hace poco se pensaba que el límite de tiempo que resisten «viables» los quistes era como mucho de unos 50 años. Pero en 2011, Lundholm y colaboradores publicaron un trabajo en el que germinaron quistes de dinoflagelados con un siglo de antigüedad !!

En la revista Nature Communications, podemos consultar gratis los primeros resultados en 2011 y observar un quiste centenario y la célula germinada del dinoflagelado Pentapharsodinium dalei. http://www.nature.com/ncomms/journal/v2/n5/full/ncomms1314.html

Muestrearon en Suecia, en el fiordo Koljö, indicado en esta imagen de Google Maps. Los quistes permanecieron intactos durante un siglo, condenados en el fondo porque en el fiordo Koljö no hay apenas «bichos» que remuevan y devuelvan los quistes a la superficie.

La falta de oxígeno también fue importante para la conservación de los quistes en el sedimento…pero una vez en el laboratorio, las condiciones adecuadas de luz, nutrientes y temperatura despertaron a los quistes y dieron lugar a células completamente normales.

Ejemplos de quistes en dinoflagelados, aislados en Galicia (Autora: Isabel Bravo). A) Protoperidinium conicum. B) Protoperidinium sp. C) Alexandrium minutum. D) Protoperidinium oblongum.
E) Alexandrium tamarense.

El impacto del meteorito de Chicxulub tuvo la potencia de mil millones de bombas atómicas como la de Hiroshima y se piensa que los incendios que provocó en todo el planeta oscurecieron el sol hasta 9 meses, sin una luz normal al menos hasta una década después.

Los efectos fueron devastadores sobre el clima y la circulación de los océanos. El descenso de temperaturas y la falta de luz y alimentos provocó la extinción masiva de la vida…

En el mar la vida planctónica también se extinguió en su mayor parte…

Excepto para las diatomeas y dinoflagelados cuyas esporas y quistes descansaron en el fondo ajenas a todo, soñando con aquella canción de REM…

It’s the end of the world as we know it (and I feel fine…)…

 

 

Referencias:

A classification of living and fossil dinoflagellates. Fensome RA, Taylor FJR, Norris G, Sarjeant WAS, Wharton DI, Williams GL. Micropaleontology Special Publication Number 7, American Museum of Natural History. (1993).
-Lundholm N, Ribeiro S, Andersen TJ, Koch T, Godhe A, Ekelund F & Ellegaard M. Buried alive – germination of up to a century-old marine protist resting stages. Phycologia 50(6): 629-640. (2011).