Entradas

Las algas suicidas

Envejecer y morir forma parte del ciclo de vida que heredamos de nuestros antepasados y que evoluciona de forma distinta en cada especie por la selección natural. Ambos conceptos resultan familiares en seres pluricelulares, pero no son sencillos de entender en microorganismos unicelulares. Por ejemplo el fitoplancton. ¿Las microalgas envejecen? ¿cuándo y por qué se mueren?

Cultivo de la diatomea Ditylum brightwellii. Autor: F. Rodríguez

Hablamos de fitoplancton senescente cuando sus poblaciones se deterioran en condiciones desfavorables, a menudo después de una proliferación que agota los nutrientes. En el laboratorio también observamos células y cultivos «viejos», con alteraciones en su aspecto normal, color o tamaño, que no se dividen y languidecen o colapsan de repente.

Más allá de esto, que pueden ser «artefactos» de laboratorio, hasta hace pocos años se creía que el fitoplancton era casi inmortal. En teoría podía dividirse hasta el infinito y las pérdidas en el medio natural se explicaban por depredación y/o sedimentación.

Esto, que puede ser cierto para las diatomeas, no funciona tan bien en otros grupos del fitoplancton y para ajustar balances en el ecosistema suelen utilizarse expresiones como «autolisis», «muerte natural» o «pérdidas internas» que no explican causas ni mecanismos.

En cultivos y en el medio natural se observan colapsos masivos después de proliferaciones (p.ej. de cianobacterias y dinoflagelados) y entre las razones biológicas suelen citarse infecciones por virus, bacterias o parásitos.

Sin embargo, a estos factores se ha unido en la última década el descubrimiento de que el fitoplancton puede «suicidarse» mediante muerte celular programada (MCP). ¿Pero qué sentido tiene autodestruirse?

Las diferentes enzimas de la familia de las caspasas (C), paracaspasas (PC) y metacaspasas (MC) en los reinos de la vida. Sólo faltan las Archaeas, que también tienen actividad caspasa. Fuente: Vercammen y col. (2007)

La MCP se describió hace casi un siglo en plantas como un mecanismo esencial para desarrollar y «esculpir» el organismo, diferenciando estructuras y funciones. Un ejemplo clásico de MCP es la caída de las hojas en otoño.

La MCP es una nueva expresión génica en la célula que activa un programa de autodestrucción mediado generalmente por enzimas proteasas (de la familia de las caspasas, metacaspasas, paracaspasas, etc). Dichas enzimas, relacionadas entre sí, están presentes en todos los reinos de la vida.

Cada una de nuestras células tiene la capacidad de apretar el botón rojo y saltar por los aires !! y mejor que así sea.

El estudio de la MCP en células animales se inició después de su descubrimiento en plantas, y ha progresado más por la relación entre el cáncer y los fallos en la MCP que permiten el crecimiento celular descontrolado en tejidos y órganos dañando su funcionamiento.

Cuando hablamos de muerte celular hay que distinguir entre necrosis y apoptosis, siendo ésta una manifestación morfológica de MCP.

Célula apoptótica. Autor: Steve Gschmeissner. Fuente: Pinterest

La necrosis es una muerte celular «desordenada», no implica mecanismos genéticos, sólo la pérdida de integridad celular por un estrés insoportable. En cambio, la apoptosis es un proceso ordenado que comporta una serie de cambios morfológicos (fragmentación del ADN, disminución del volumen, formación de cuerpos apoptóticos) consecuencia de la MCP.

Existen otras manifestaciones de MCP como la paraptosis, producida por señales moleculares pero sin intervención de caspasas, que ocurre p. ej. en el cocolitofórido Emiliania huxleyi.

La MCP tiene sentido altruista en un sistema multicelular donde la muerte de células individuales otorga un beneficio para el sistema, bien aniquilando células infectadas, o liberando nutrientes que pueden absorber otras células, manteniendo la homeostasis celular (equilibrio entre división y muerte), regulando cambios ontogenéticos (diferenciación celular y desarrollo de órganos y sistemas), etc.

Poco o nada de esto parece aplicable al fitoplancton… 

Si los individuos de una población no comparten parentesco cada célula es «el sistema» y es inútil inmolarse (por no decir otra cosa) sin una recompensa genética evidente. El parentesco entre células cercanas es poco probable en poblaciones diluidas en el medio natural, excepto en el caso de especies formadoras de cadenas y colonias, o de proliferaciones masivas dominadas por una línea clonal. Dicha situación no parece habitual en el medio acuático y la mayoría de estudios indican que la variabilidad genética se mantiene elevada en las proliferaciones de fitoplancton.

La cuestión es si esas diferencias genéticas son más importantes que las adaptaciones que benefician al grupo y que pueden justificar comportamientos aparentemente altruistas. Al fin y al cabo todos son la misma especie.

La teoría de que la selección puede actuar a múltiples niveles en el fitoplancton (genes, individuos, grupos, especies y conjuntos de especies) es atractiva y significa que los individuos pueden interactuar entre sí contribuyendo a una mejor adaptación del grupo.

Parece lógico que sea así y no que las poblaciones de fitoplancton consten de entes aislados que ni compiten ni interactúan entre sí, como las piedras.

Incluso las bacterias disponen de comportamiento social: la «percepción de quorum«, que regula la expresión génica en función de la densidad de la población. El fitoplancton no va a ser menos.

La vida microbiana no es tan asocial como creíamos. De hecho se ha descubierto la existencia de «comunicación» entre los reinos procariota y eucariota. En concreto entre bacterias del género Sulfitobacter que estimulan la división celular de la diatomea Pseudo-nitzschia multiseries con la que están asociadas (Amin y col. 2015).

Los biofilms bacterianos favorecen la supervivencia y el crecimiento a través una diferenciación celular, mejorando la adaptación al medio. Con el mismo objetivo, los ciclos de vida del fitoplancton son harto complejos e incluyen fases con diferenciación celular, formación de colonias, etc.

Trichodesmium spp. Autora: Dolors Blasco (Leg 6 Malaspina; Océano Pacífico)

En 2004, Berman-Frank y col. descubrieron la existencia de MCP en la cianobacteria Trichodesmium spp., fijadora de nitrógeno y formadora de extensas proliferaciones en aguas tropicales y subtropicales.

Este organismo podría usar la MCP como estrategia para liberar fragmentos pluricelulares de las colonias (hormogonios), que actúan como dispersoras de la población, en condiciones desfavorables (limitación por hierro y fósforo, exceso de luz y estrés oxidativo).

Curiosamente, las metacaspasas se han detectado en cianobacterias marinas coloniales fijadoras de nitrógeno como Anabaena, Trichodesmium y Nostoc, pero no en géneros abundantes y cosmopolitas (aunque no formen blooms), como Prochlorococcus o Synechococcus, que han debido perderlas a lo largo de la evolución.

Entre el fitoplancton eucariota se han encontrado metacaspasas en las líneas evolutivas roja y verde: diatomeas (Thalassiosira), cocolitofóridos (Emiliania), dinoflagelados (Peridinium, Amphidinium, Symbiodinium), clorofíceas (Dunaliella), etc.

Quizás la MCP sea también una desafortunada consecuencia de la existencia de metacaspasas, que cumplen importantes funciones en la transición entre fases del ciclo de vida (de células vegetativas a formas de resistencia o fases sexuales), donde se lleva a cabo la destrucción controlada de ciertos componentes celulares.

Por otro lado, si las metacaspasas caen en manos del enemigo tienes un problema…!!

Emiliania huxleyi. Autor: Sergio Seoane

El cocolitofórido Emiliania huxleyi forma proliferaciones masivas en la superficie del océano que a menudo son infectadas y aniquiladas por virus.

Se conocían muchos virus específicos de E. huxleyi pero lo que no se supo hasta Bidle y col. (2007), es que «secuestran» y ponen a su disposición las metacaspasas de Emiliania como parte de su estrategia de replicación.

El cuento dice así: el enemigo (virus EhV1) roba las armas del castillo (maquinaria genética) y lo revienta desde dentro (activando MCP y la síntesis de metacaspasas). Por supuesto, después de vaciar la despensa y replicarse a sus anchas.

Y la moraleja es: «la expresión y activación de las metacaspasas en cada clon de E. huxleyi determina la susceptibilidad frente a la infección del virus».

Si te gustó esta entrada puedes votar a «Fitopasión» en la categoría de medioambiente de los premios Blogs20minutos. –El plazo finaliza el 10 de marzo– Muchas gracias !!!

Referencias:

-Amin, S.A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522:98-101 (2015).
-Berman-Frank, I. y col. The demise of the cyanobacterium, Trichodesmium spp., via an autocatalyzed cell death pathway. Limnol. Oceanogr. 49: 997–1005 (2004).
-Bidle, K.D. & Falkowski, P.G. Cell death in planktonic, photosynthetic microorganisms. Nature Rev. Microbiol. 2: 643–655 (2004).
-Bidle K.D. y col. Viral activation and recruitment of metacaspases in the unicellular coccolithophore Emiliania huxleyi. PNAS 104:6049-54 (2007).
-Franklin D.J. y col. What is the role and nature of programmed cell death in phytoplankton ecology? Eur. J. Phycol. 41:1-14 (2007).
-Vercammen D. y col. Are metacaspases caspases? JCB 179:375-380 (2007).
-Von Dassow, P. & Montresor, M. Unveiling the mysteries of phytoplankton life cycles: patterns and opportunities behind complexity. J. Planton Res. 33:3-12 (2011).