El mar del ámbar

El libro de H. Jahren (Ed. Paidós, 2016). Fuente: Planetadelibros
El permafrost es una capa de suelo o de roca de profundidad variable donde la temperatura ha estado por debajo de 0ºC ininterrumpidamente durante miles de años (AMS).
Existe en latitudes altas de ambos hemisferios (América del Norte, Eurasia, Antártida y los Andes) y es famoso por las consecuencias de su deshielo a causa del calentamiento global >>aumento de la erosión y deslizamientos del terreno, alteración de ecosistemas y liberación de gases de efecto invernadero (metano y CO2).
En un capítulo de «Lab girl« (traducido como «La memoria secreta de las hojas«), la investigadora Hope Jahren se descubre cubierta de hojas muestreando el permafrost en Nunavut (Canadá).
Allí sólo crecen líquenes: esas hojas son la prueba de inmensos bosques de coníferas que iban más allá del círculo polar Ártico hace más de 40 millones de años (en el Eoceno y Paleoceno, cuando los mares templados se extendían hasta los polos).

A partir del ámbar se han descrito numerosas especies y géneros extintos de vegetales y animales, sobre todo insectos. Fuente: Chiapas virtual
La resina fosilizada de aquellas coníferas es también el principal origen de una piedra semipreciosa: el ámbar. Y los depósitos del Báltico se cuentan entre los mayores del mundo…
En el origen del ámbar Báltico podrían estar, según un estudio reciente, coníferas de la familia Sciadopityaceae, de las que sólo queda una especie considerada «fósil viviente»: el pino sombrilla del Japón (Sciadopitys verticillata, endémica de dicho país).
El mar Báltico es el más joven del planeta. Se originó mucho después de la desaparición de aquellos bosques polares, hace menos de 20.000 años, por efecto de la erosión glaciar y la retirada de los hielos.
Su forma y salinidad actuales son aún más recientes —unos 2000 años— según HELCOM (HELsinki COMmision, el organismo responsable de la protección medioambiental del Báltico). Es un ecosistema único, inmaduro por su juventud y sujeto a una enorme presión humana. 9 países le rodean con 85 millones de personas en su área de influencia.

La reducción en la extensión máxima del hielo en el Báltico, comparando la década de los 60′ y los años 2005-09. Fuente: HELCOM (2017)
El agua del Báltico es salobre, con una salinidad media de 6 (por 35 del océano), debido a su estrecha comunicación con el mar del Norte, además de la baja evaporación y el ingente aporte de agua de los ríos, la lluvia y el deshielo. No en vano, los vikingos le llamaban «el lago del este» o «el mar del este».
Su profundidad media es de 57 metros. El estrecho de Kattegat es su conexión al océano, con unos 50 km en su parte más estrecha y una profundidad máxima de apenas 151 m (descendiendo rápidamente a 20-40 m). En comparación, el estrecho de Gibraltar en el Mediterráneo sólo tiene 14 km de ancho pero su profundidad máxima alcanza los 900 m.
Parte de la superficie del Báltico se congela durante el invierno pero en esta región los efectos del calentamiento global avanzan a mayor velocidad que en el promedio del planeta.
En los próximos 100 años se espera que las precipitaciones de nieve se reduzcan hasta en un 75% y que la cobertura máxima de hielo disminuya entre 50-80%, con aumentos del nivel del mar especialmente en la zona sur del Báltico.
HELCOM publicó en 2010 un informe integral del estado ecológico del Báltico y en 2017 otro sobre el progreso de las medidas para mejorar la salud de sus ecosistemas.
A la vista de ambos informes queda mucho por hacer: el impacto acumulado de las actividades humanas es enorme y solo se libra la parte central de su cuenca norte, el Golfo de Bothnia.
En 2010, la mayoría de las zonas costeras poseían concentraciones de nutrientes y clorofila demasiado elevadas. Esto se llama eutrofización y es uno de los problemas más serios del Báltico, junto a la contaminación por la industria y el tráfico marítimo, la sobrepesca y la degradación del fondo por arrastreros, construcciones y dragados.
La eutrofización afecta a la inmensa mayoría de aguas, tanto abiertas como costeras, debido al nitrógeno, fósforo y materia orgánica que llega desde los terrenos agrícolas, núcleos urbanos y rurales.
La susceptibilidad del Báltico a la eutrofización se debe a que la renovación de sus aguas es muy lenta como consecuencia de su limitada comunicación con el océano.

Estas gráficas son «malas noticias» para las cianobacterias del Báltico. Fuente: HELCOM (2017)
Muchas regiones del Báltico permanecen en un «círculo vicioso» que favorece las proliferaciones algales, a pesar de que los aportes de nutrientes se han reducido bastante desde los años 80′.
Las condiciones de hipoxia y anoxia en el fondo, debidas a la degradación bacteriana de la materia orgánica y la pobre ventilación de las aguas, favorecen la liberación de fósforo desde los sedimentos, alimentando la proliferación de cianobacterias fijadoras de nitrógeno durante el verano.
Dichas cianobacterias no son perjudiciales en sí mismas: cumplen un papel ecológico importante ya que su habilidad para capturar N2 disuelto permite transformarlo en compuestos asimilables para los niveles tróficos superiores.
El problema es que su crecimiento descontrolado en superficie (>200 μg (peso húmedo)/L) y posterior sedimentación estimulan la actividad microbiana en los sedimentos alimentando el «círculo vicioso». Se calcula que los niveles bajos de oxígeno han dañado y disminuido la fauna bentónica en 1,7 millones de toneladas.

El rectángulo en el sur del Báltico indica la localización del bloom de cianobacterias en la imagen inferior: Fuente: NASA
En el último siglo las condiciones de hipoxia y anoxia se han multiplicado x12 en el Báltico (de 5.000 a 60.000 km2). Esta situación tiene repercusiones a todos los niveles del ecosistema, ya que empobrece la biodiversidad vegetal y animal favoreciendo el desarrollo de proliferaciones «oportunistas» de cianobacterias filamentosas u otras microalgas.
Aunque su variabilidad interanual es enorme, los blooms masivos de cianobacterias eran un fenómeno esporádico hace un siglo que se ha convertido en habitual durante las últimas décadas.

Bloom de Nodularia en el Báltico (11/VIII/2015). Arriba en el centro hay señalado un barco. Fuente: NASA
Aphanizomenon, Nodularia y Dolichospermum son los principales géneros responsables y aprox. 1/3 de dichas proliferaciones son debidas a una especie tóxica: Nodularia spumigena, sobre todo en las regiones central y sur del Báltico (Aphanizomenon domina en el norte).
Las Nodularinas que produce N. spumigena son compuestos hepatotóxicos y el riesgo sanitario y el desagradable aspecto (espuma, mal olor) que ocasionan sus proliferaciones provocan el cierre cada verano de numerosas playas en el sur del Báltico, concretamente en Polonia.
Pasemos a los dinoflagelados tóxicos…
En 1997 se produjo por primera vez una proliferación de Alexandrium ostenfeldii, que además ocasionó una tremenda bioluminiscencia tal y como observaron los pescadores locales en Åland.

Alexandrium ostenfeldii (teñido con calcoflúor). Autor: René. Fuente: Photomacrophotography.net
En agosto de 2001 una proliferación similar acompañada de bioluminiscencia volvió a suceder en el Golfo de Gdansk (Polonia) y desde entonces las proliferaciones de dicha especie y su bioluminiscencia se registran en el Báltico de modo habitual todos los años.
A. ostenfeldii produce toxinas paralizantes y los experimentos con cultivos demuestran que sus poblaciones en el Báltico están adaptadas a un rango de salinidades de 6-25, distinto al de sus congéneres marinos. De hecho A. ostenfeldii es la única especie de su género en el Báltico y sus proliferaciones las únicas responsables de fenómenos de bioluminiscencia en este mar.
Es más >>> Le Tortorec y col. (2016) confirmaron la presencia del gen luciferasa (lcf) en todos los cultivos de A. ostenfeldii aislados del Báltico y su relación con la producción de bioluminiscencia, planteando la posibilidad de utilizar este bonito fenómeno para detectar la presencia de proliferaciones de A. ostenfeldii !!
Para mejorar la salud del Báltico es importante rehabilitar los hábitats naturales dañados: humedales, poblaciones de macroalgas y fanerógamas, que actúan como filtros naturales del exceso de nutrientes preservando la estabilidad de los ecosistemas del Báltico. Pero esto no es suficiente…
La caza y la pesca han tenido un enorme impacto y modificado sustancialmente el ecosistema original del Báltico. Veamos…a lo largo del último siglo dicho ecosistema ha sufrido 3 grandes cambios:

Ecosistema natural del Báltico. Fuente: HELCOM (2010)
El primero de ellos (a comienzos del s.XX), fue el declive de las poblaciones de focas y marsopas por culpa de la caza masiva, lo que provocó como efecto rebote liberar a las poblaciones de bacalao del control de sus predadores naturales.
El segundo cambio vino del incremento de nutrientes y la eutrofización generalizada en el Báltico durante la segunda mitad del s.XX, que aumentó la productividad de sus aguas. A pesar de las consecuencias negativas que discutimos antes, esto disparó las poblaciones de bacalao cuya supervivencia en las fases iniciales del ciclo de vida se vio favorecida por la mayor productividad.
Y por último, el desarrollo de la industria pesquera a gran escala a finales de los 80′, que diezmó al bacalao limitando sus poblaciones a la zona sur del Báltico, y multiplicó a su vez la de una de sus presas: el espadín. Su otra presa favorita, el arenque, ha caído gradualmente desde los años 70′ con una ligera recuperación durante la última década.
Todo ello ilustra los efectos en cascada que tienen los cambios en el ecosistema, que te benefician o perjudican según la posición que ocupes en la cadena trófica. En el caso de la eutrofización, el efecto general ha sido que en las bahías y lagunas costeras las poblaciones de macrófitas han declinado a favor de la dominancia del fitoplancton, incluyendo los blooms mencionados de cianobacterias y proliferaciones ocasionales de macroalgas.

Marsopas del Báltico (Phocoena phocoena). Autor: Solvin Zankl. Fuente: Ascobans
Sin embargo, no todo son malas noticias. Se ha comprobado una recuperación gradual en las poblaciones de mamíferos y aves marinas gracias a que la presión de factores como la caza y la contaminación ha disminuido en las últimas décadas. Asimismo, el esfuerzo pesquero sobre el bacalao se ha reducido a niveles sostenibles acordes al plan de gestión a largo plazo establecido por la UE (Anon. 2007) y se confía en que aumenten los stocks en un futuro próximo.
En cualquier ecosistema los desequilibrios pueden llegar de dos direcciones: los niveles inferiores y superiores de la cadena trófica. Así que la recuperación integral del Báltico que propugnan organizaciones como HELCOM sólo puede conseguirse actuando en ambos niveles. No sólo reduciendo la entrada de nutrientes sino permitiendo que los niveles superiores, focas y marsopas, vuelvan a ocupar la posición que nunca debieron perder…
Referencias:
-Alessandro O. Understanding the spatio-temporal dynamics of demersal fish species in the Baltic Sea. Aqua Introductory Research Essay 2015:1. Department of Aquatic Resources, Swedish University of Agricultural Sciences, Drottningholm Lysekil Öregrund. 29 pp. (2015)
-Anon. Council Regulation (EC) No 1098/2007 of 18 September 2007 establishing a multiannual plan for the cod stocks in the Baltic Sea and the fisheries exploiting those stocks, amending Regulation (EEC) No 2847/93 and repealing Regulation (EC) No 779/97. Official Journal of the European Union, L 248/1, 22.9.2007
-HELCOM. Ecosystem Health of the Baltic Sea 2003–2007: HELCOM Initial Holistic Assessment. Balt. Sea Environ. Proc. No. 122 (2010)
-HELCOM. Measuring progress for the same targets in the Baltic Sea. 48 pp. (2017)
-Le Tortorec A. y col. Diversity of luciferase sequences and bioluminescence production in Baltic Sea Alexandrium ostenfeldii. Eur. J. Phycol. 51:317-327 (2016)
-Wolfe A.P. y col. A new proposal concerning the botanical origin of Baltic amber. Proc. R. Soc. B. 276:3403–3412 (2009)