Entradas

¿Quién me ha robado el mes de abril?

Quién me ha robado el mes de abril
Lo guardaba en el cajón
Donde guardo el corazón

Joaquín Sabina (1988)

Imagen de portada: el interior del disco «El hombre del traje gris» (Sabina, 1988)

Sepan ustedes que en Galicia nos han robado el mes de abril. Y no me refiero al confinamiento por la COVID-19. Se trata de que en la última década el afloramiento de abril es una sombra de lo que fue.

Laboratorios del INTECMAR (Silvia Calvo, Unidad de Oceanografía y Fitoplancton). Fuente: La Voz de Galicia.

Todos los datos que citaré salen del IEO (índice de afloramiento) y del INTECMAR (cierres por toxinas y datos biológicos).

Vayamos al grano…

Una gráfica habla más que mil palabras.

A continuación tienen la media histórica del índice de afloramiento entre 1970 y 2018.

En colores señalo algunas décadas. En rojo la última. Y tanto 2019 como 2020 marcan la misma tendencia.

Es más...

El índice de afloramiento en abril de 2020 ha sido negativo: hundimiento en lugar de afloramiento. Este hecho, infrecuente entre 1967-2009 (6 veces), se ha repetido en 5 ocasiones entre 2010-2020.

Índice de afloramiento (FNMOC serie histórica). Fuente: IEO. Valores positivos indican afloramiento. Los negativos son sinónimo de hundimiento (elaboración propia).

Alguien nos ha robado el mes de abril y me temo que somos los principales sospechosos.

¿Esto qué significa? ¿en qué afecta a las rías? Pues ya se imaginarán que voy a hablarles del fitoplancton tóxico…

El razonamiento (simplificado) es el siguiente: los vientos de componente norte favorecen el afloramiento y la fertilización natural de las rías, intensificando la circulación positiva de las mismas. Es decir: la entrada de agua profunda, fría y rica en nutrientes, y la salida de agua superficial hacia plataforma.

Esquema del afloramiento costero. Fuente: NPG.

Dicho fenómeno favorece una mayor turbulencia y enriquecimiento en nutrientes que estimula a su vez el crecimiento de especies de gran tamaño como las diatomeas.

La producción acuícola de Galicia se beneficia de ello y es un sector clave: las rías producen el 97% del mejillón español (50% del europeo).

Problema: que la extracción de moluscos puede verse seriamente afectada por los cierres debidos a unas pocas especies de microalgas tóxicas.

Por el contrario, los vientos de componente sur ralentizan e incluso invierten la circulación estuarina, aumentando el tiempo de residencia de las masas de agua en las rías, favoreciendo el hundimiento.

Imaginen al afloramiento como un «centrifugado de las rías» mientras que el hundimiento introduce agua superficial cálida de plataforma, «concentrando pasivamente y/o favoreciendo el desarrollo de poblaciones de dinoflagelados: el grupo de fitoplancton que concentra la mayoría de especies nocivas.

Alexandrium minutum, dinoflagelado productor de episodios PSP por toxinas paralizantes (Samil, Ría de Vigo, 28 junio 2018).

Su capacidad de movimiento les permite, a diferencia de las diatomeas, explotar ambientes estables y migrar entre la capa superior iluminada y la inferior, más rica en nutrientes.

Por tanto, si las Rías Baixas pasan de ser un sistema dominado por el afloramiento a otro dominado por el hundimiento (en promedio), dichas condiciones favorecerán una presencia mayor de dinoflagelados.

Bateas en Bueu (Ría de Pontevedra). Autor: F. Rodríguez

En otra entrada ya mencioné un artículo de Álvarez-Salgado y col. (2008), que relacionaba el descenso (en intensidad y duración) del afloramiento en Galicia entre 1966-2006, con el incremento en los días de cierre de explotación de mejillón en batea en las Rías Baixas.

En la década siguiente a dicho estudio el afloramiento ha aumentado en intensidad durante el verano tal y como muestra la primera gráfica ¡igualando e incluso superando los valores de la serie histórica!.

Pero en primavera han seguido los recortes retrasando el inicio de la temporada. En septiembre, curiosamente, nada cambia desde hace 50 años.

Álvarez-Salgado y col. (2008) concluían que el aumento en el tiempo de renovación del agua en las Rías Baixas por el descenso del afloramiento explicaba el 80% de incremento en los días de cierre de la explotación de mejillón en batea.

Ese descenso del afloramiento lo cuantificaron en -30% de duración y -45% de intensidad.

El fitoplancton tóxico más perjudicial para el sector acuícola gallego continúa siendo Dinophysis, con especies como D. acuminata y D. acuta, productoras de toxinas diarreicas (DSP: ácido okadaico).

Proliferación de Dinophysis acuta y D. acuminata (Ría de Pontevedra, 2013).

En una tesis doctoral realizada en el IEO de Vigo, Patricio Díaz (hoy en la Universidad de Los Lagos, Chile) examinó la variabilidad interanual en las proliferaciones de ambas especies en las Rías Baixas.

Sus conclusiones (sobre datos de 1985-2012), fueron que no existía un aumento significativo en la frecuencia e intensidad de sus proliferaciones (Díaz y col. 2013, 2016).

Aaaamigo…pero los años han seguido pasando en este rincón gaiteiro del mundo. Y tras añadir una década de observaciones asistimos a algo distinto: un adelanto en el inicio de las proliferaciones de Dinophysis ligado, aparentemente, al retraso primaveral del afloramiento.

Evolución en los días de cierre de mejillón en batea en la zona Bueu B. Desde 2012 todos los meses de abril «hay pleno» debido a toxinas diarreicas (DSP: Dinophysis). Y marzo cada vez más por el mismo camino. Fuente: INTECMAR (elaboración propia).

Las diferencias son sustanciales en función de la región que estudiemos. Para esta entrada he escogido zonas de las Rías Baixas (muy afectadas), y otras con cierres moderados o bajos (incluyendo además las Rías Altas).

Bueu, en la ría de Pontevedra, es una zona con cierres prolongados por biotoxinas: llegan a superar 6 meses al año. Pues bien, la siguiente gráfica muestra la evolución en los días de cierre entre 1998-2019: +2,3 días/año.

Promedio de cierres en tres zonas de Bueu (A, B1 y B2). Se trata de los códigos de INTECMAR para distintos polígonos de bateas. Fuente: INTECMAR (elaboración propia).

Puede parecer poco, pero ello supone haber pasado de unos 180 días en 1998 a casi 240 en 2019. De mantener esa progresión en veinte años sólo habrá 2 meses libres de toxinas en la zona.

La tendencia general en Galicia es neutra ó positiva (al menos en los datos que he revisado), con mucha variación geográfica. Las otras 5 zonas que he incluido en este análisis arrojan valores de entre +0,3 y +1,8 días/año de cierres.

Promedio de cierres en diversas zonas de las Rías Baixas y Rías Altas (Sada 2). Se trata de los códigos de INTECMAR para distintos polígonos de bateas. Fuente: INTECMAR (elaboración propia).

Efectivamente, ya se habrán dado cuenta: esto es un blog y no una publicación científica. Este tema requiere de un análisis exhaustivo y una evaluación y discusión en profundidad, incluyendo más variables.

Mi intención es sólo llamar la atención sobre un hecho. La última década está consolidando una tendencia al alza en las proliferaciones tóxicas en las rías, que afectan cada vez más a la explotación de los recursos acuícolas en Galicia.

Fuente: Xerais.

Yo mismo era incrédulo hace unos años acerca de esta tendencia, debido a las oscilaciones de larga escala y la relativa corta duración de la serie temporal de datos biológicos. Pero los datos están ahí, sobre todo en lo que respecta a las Rías Baixas.

Si este incremento está asociado a los efectos del cambio climático en Galicia, listos vamos.

Porque asistimos a un aumento gradual de temperatura y a una prolongación de los días estivales en las últimas décadas (Os tempos e o clima de Galicia).

Afundación, la obra social de ABANCA, organizó en junio un ciclo de charlas bajo el lema del «Mes de los océanos y el medio ambiente«.

Por parte del IEO participamos Montse Pérez Rodríguez, Suso Gago y yo. Pero no voy hablar de la nuestra sino de otra charla: «El mar de Galicia y el cambio climático«, por Xosé Antón Álvarez Salgado (IIM-CSIC).

Fuente: Afundación.

Y la cito porque es una charla ideal para conocer los efectos del cambio climático en la costa gallega.

Toca todos los palos: elevación del nivel del mar y de su temperatura superficial, acidificación oceánica, registros de especies tropicales de peces, etc…y por supuesto, las proliferaciones de fitoplancton tóxico. Si les interesa pueden verla aquí.

Y ahora la pregunta del millón sobre proliferaciones tóxicas y cierres: ¿afectan mucho o poco al precio, venta y producción de mejillón?

Pues de contestar a esta cuestión se han encargado varios estudios, como Rodríguez-Rodríguez y col. (2011) y la tesis de máster de Pablo Louzao (2017).

Incidencia de periodos de cierre por biotoxinas y producción de mejillón en Galicia. Fuente: Rodríguez-Rodríguez y col. (2011).

Y la conclusión es que las proliferaciones tóxicas tienen un efecto moderado en dichos factores…

…pero no se puede establecer una correlación directa entre los cierres de los polígonos de bateas y las pérdidas económicas.

Y ello es así porque existen otras variables que también influyen en las caídas de la producción y modulan las consecuencias de los cierres por biotoxinas.

Las consecuencias finales dependen de la época del año (p.ej. si coincide con una mayor demanda y extracción), la intensidad de los episodios y la capacidad que tengan los productores de anticiparse y colocar el mejillón en el mercado antes –ó después– de que tengan lugar los cierres, suavizando así las pérdidas durante dichos periodos.

Ventas (en euros) de mejillón fresco e incidencia de cierres por biotoxinas en Galicia. Fuente: Louzao (2017).

En consecuencia, la buena noticia es que a pesar del efecto creciente de las proliferaciones tóxicas en los últimos años, la producción de mejillón en Galicia no se ha resentido y continúa en unas 225.000 toneladas anuales.

La mala es este ritmo de incremento observado en las proliferaciones tóxicas.

Referencias:

  • Álvarez-Salgado y col. Renewal time and the impact of harmful algal blooms on the extensive mussel raft culture of the Iberian coastal upwelling system (SW Europe). Harmful Algae 7:849–55 (2008).
  • Díaz P. y col. Climate variability and oceanographic settings associated with interannual variability in the initiation of Dinophysis acuminata blooms. Marine Drugs 11:2964-2981 (2013).
  • Díaz P. y col. Climate variability and Dinophysis acuta blooms in an upwelling system. Harmful Algae 53:145-159 (2016).
  • Louzao P. What is the true influence of the red tide on the production, price and marketing of the Galician mussel? Master Thesis in International Fisheries Management, The Arctic University of Norway, 61 pp. (2017).
  • Rodríguez-Rodríguez y col. Are red tides affecting economically the commercialization of the Galician (NW Spain) mussel farming? Marine Policy 35(2):252-257 (2011).
  • Fuentes Web: INTECMAR e IEO.

Dinophysis que inundas las Rías

En esta entrada seguiremos hablando de Dinophysis, ese género de dinoflagelados mixótrofos y tóxicos que vampiriza como draculines microscópicos al desdichado Mesodinium.

Polígonos de bateas cerrados (rojo) y abiertos (azul) en las Rías Bajas (23-III-2018), por motivo de toxinas lipofílicas, es decir, Dinophysis. Fuente: INTECMAR (Xunta de Galicia)

Desde marzo ya está dando la lata en Galicia porque sus poblaciones, en concreto D. acuminata, impiden la extracción de mejillón en la mayoría de cultivos en batea de las Rías Baixas.

Lo bueno es que estamos en temporada baja y el trastorno aún no es grave. Pero si su presencia continúa siendo abundante y se prolonga en la primavera, los perjuicios para los productores podrían ser importantes después de un 2017 tranquilo.

A día de hoy los niveles de toxinas lipofílicas (ácido okadaico: AO) superan los máximos legales (160 µg equivalentes AO/Kg vianda), en numerosos polígonos de bateas.

De ahí el rojo que invade el mapa del estado de zonas de producción que publica INTECMAR (Xunta de Galicia), responsable del control de biotoxinas y seguimiento del fitoplancton nocivo en Galicia.

Concentración de Dinophysis acuminata (células/litro) en las Rías Baixas, 19-25 marzo 2018. Fuente: INTECMAR

La abundancia de Dinophysis acuminata, la especie productora de dichas toxinas, oscila entre 100-5000 células/litro en la mayoría de muestras recogidas en las rías de Vigo, Pontevedra, Arousa y Muros-Noia.

Esas densidades son suficientes para provocar el cierre de las explotaciones. No obstante, en un litro de agua ese número de células es ridículo y no produce ni asomo de marea roja.

Si observaran una de dichas muestras sólo verían agua transparente y copépodos blancuzcos saltando como pulgas.

A pesar de ello, en la prensa local se describe la situación con titulares como «La marea roja inunda la ría de Vigo» (La Voz de Galicia, 21-III-2018).

Pero Dinophysis no prolifera solamente en Galicia, ni mucho menos.

Sus floraciones son habituales en numerosas costas de todo el mundo, especialmente en regiones de latitudes medias en Europa, Asia, Sudámerica y más recientemente Norteamérica.

Floración de Dinophysis acuta en una muestra de la región de Aysén del General Carlos Ibáñez del Campo (Chile). Autor: Patricio Andrés Díaz.

Aquí tienen por ejemplo la imagen de una muestra obtenida a mediados del pasado mes de febrero durante una campaña en Aysén (Chile).

La muestra se recogió mediante arrastre de red para concentrar las células y en este caso se trataba de una floración de Dinophysis acuta.

En la entrada anterior discutía sobre los cleptoplastos de Dinophysis, robados a Mesodinium, de los cuales obtiene energía mediante la fotosíntesis. Pero además de esta presa, Dinophysis también necesita asimilar nutrientes disueltos en el agua. Sin embargo, su caso es especial. Verán…

Mientras que en muchos organismos fotosintéticos cabe esperar una relación directa entre nutrientes disueltos y crecimiento, la mixotrofía de Dinophysis rompe esa lógica. Apenas existen trabajos relacionando su abundancia con la distribución de nutrientes y nuestro conocimiento sobre este tema es aún escaso y reciente.

El crecimiento del fitoplancton necesita de un balance entre condiciones físicas (luz, turbulencia) y químicas (nutrientes).

Los distintos grupos de algas poseen estrategias adaptativas y óptimos de crecimiento en rangos diferentes de condiciones ambientales.

El «mandala» clásico de Margalef (1978) clasificaba los organismos que prefieren condiciones turbulentas y ricas en nutrientes, como las diatomeas (oportunistas: estrategas de la r), frente a los dinoflagelados que tienden a proliferar en ambientes más estables y pobres en nutrientes (especialistas: estrategas de la K).

«Mandala» de Margalef en el que se representa la transición de diatomeas a dinoflagelados productores de «mareas rojas». Fuente: Glibert (2016)

Un caso paradigmático son los episodios de afloramiento donde las aguas oceánicas profundas ascienden hacia la costa cargadas de nitratos, fosfatos y silicatos, estimulando las floraciones de primavera de diatomeas en el hemisferio norte. Esto es lo que se denomina «producción nueva» y la fuente de nitrógeno asociada es el nitrato.

Luego, el agotamiento de los nutrientes y una mayor estabilidad en la columna de agua favorecen la sucesión de grupos del fitoplancton. La descomposición de la materia orgánica disuelta y particulada producida en la etapa previa estimula la actividad del bucle microbiano, que recicla los nutrientes dentro del ecosistema planctónico.

Dichas condiciones favorecen el desarrollo de otros grupos como los dinoflagelados y en este caso hablamos de «producción regenerada». Las fuentes de nitrógeno asociadas son amonio y urea.

En este contexto ecológico cabría esperar que Dinophysis (en lo que respecta a la asimilación de nutrientes) se comporte como un dinoflagelado. Y así parece ser.

En muestras naturales (Northport, Nueva York), enriquecidas con distintos nutrientes inorgánicos y orgánicos (Hattenrath-Lehmann y col. 2015), la abundancia de Dinophysis acuminata aumentó en 13 de 14 experimentos. Los efectos positivos fueron más intensos en el caso del amonio, pero también se observaron correlaciones con adiciones de vitamina B12 y materia orgánica aislada de aguas residuales.

Por el contrario, las muestras enriquecidas con nitratos, urea o fosfatos no arrojaron tendencias claras. Dado que se trataba de muestras naturales no pudieron descartar que el efecto de los nutrientes fuese directo o indirecto, a través de interacciones con otros organismos presentes como Mesodinium.

Los estudios en cultivos de Dinophysis confirman su preferencia por el amonio.

Dos trabajos posteriores sobre cultivos de D. acuminata han revelado las preferencias de dicha especie a la hora de asimilar nutrientes inorgánicos y orgánicos (Hattenrath-Lehmann y Gobler, 2015; Tong y col. 2015). Lo resumiré en pocas palabras:

Dinophysis acuminata no utilizó nitratos ni fosfatos tanto en experimentos en los que 1) se le añadía el ciliado Mesodinium o 2) se le mantenía en ayunas.

(Tong y col. 2015)

Los cultivos de D. acuminata (con o sin presa) crecieron más rápido con adiciones de amonio, aminoácidos (glutamina), o materia orgánica aislada de aguas residuales. Las adiciones de nitrato sólo tuvieron efectos positivos cuando tenían mucha presa disponible (Mesodinium rubrum).

(Hattenrath-Lehmann y Gobler, 2015)

Dinophysis acuminata merendándose a Mesodinium rubrum en la portada de abril de Scientific American. Fuente: Scientific American

Por tanto, además de la preferencia de Dinophysis acuminata por fuentes de nitrógeno reducidas –como el amonio frente al nitrato– los experimentos sobre cultivos confirman que ciertos nutrientes inorgánicos y orgánicos pueden estimular directamente su crecimiento en ausencia o presencia de Mesodinium.

No en vano, la hipótesis de los nutrientes –en particular los aportes de nitrógeno– es una de las que se baraja para explicar la reciente aparición y expansión de floraciones tóxicas de D. acuminata en Norteamérica en la última década.

Quizás tengan algo que ver esas floraciones con la presencia de Dinophysis acuminata y Mesodinium en la portada de abril de Scientific American. Se lo diré en cuanto llegue a mis manos y lea el artículo Tiny Killers !!

Nota: la ilustración de portada pertenece a Dinophysis sphaerica [Ernst Haeckel – Kunstformen der Natur (1904), plate 14: Peridinea]

Referencias

-Glibert M. Margalef revisited: A new phytoplankton mandala incorporating
twelve dimensions, including nutritional physiology. Harmful Algae 55:25–30 (2016).
-Hattenrath-Lehmann, T. K. y col. Nitrogenous nutrients promote the growth and toxicity of Dinophysis acuminata during estuarine bloom events. PLoS One10:e0124148 (2015).
-Hattenrath-Lehmann, T.K. & Gobler C.J. The contribution of inorganic and organic nutrients to the growth
of a North American isolate of the mixotrophic dinoflagellate, Dinophysis acuminata. Limnol. Oceanogr. 60:1588-1603 (2015).
-Margalef, R. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1:493–509 (1978).
-Tong, M. y col. Role of dissolved nitrate and phosphate in isolates of Mesodinium rubrum and toxin-producing Dinophysis acuminata. Aquat. Microb. Ecol. 75:169-185 (2015).

Los riesgos del marisco furtivo

Toxina. 1. f. Biol. Veneno producido por organismos vivos.

Furtivo. 1. adj. Que se hace a escondidas. 2. adj. Dicho de una persona: Que caza, pesca o hace leña en finca ajena, a hurto de su dueño.

Diccionario de la lengua española (dle.rae.es)

Imagínense sentados a la mesa y que les sirven mejillones al vapor, vieiras al horno, almejas a la marinera y navajas a la plancha, acompañados de un Ribeiro o un Albariño bien fresquito. Luego les dicen que es marisco furtivo. ¿Saben a qué riesgos se exponen? Pues se lo voy a contar.

Cultivos de mejillón en bateas (Bueu, Ría de Pontevedra). Autor: F. Rodríguez

Hace mucho que quería escribir sobre los riesgos de consumir marisco furtivo, ya sea recogido en el medio natural por el consumidor o comprado. Me referiré a Galicia, porque allí es donde vivo y tenemos bastante marisco, toxinas y furtivismo.

Galicia es la comunidad autónoma que consume más pescado fresco y marisco por delante de Asturias, Castilla y León y País Vasco, según datos de MERCASA (Martín Cerdeño, 2017). El cultivo de mejillón gallego (Mytilus galloprovincialis) en batea es el más productivo de España y de los principales a nivel europeo con unas 250.000 Tm/año.

Los recursos del mar son muy importantes para la región. Son muchos empleos y familias las que dependen directa o indirectamente de la pesca y la acuicultura. No me gusta la expresión pero el mar está en el ADN de los gallegos.

Sin embargo, existe al mismo tiempo un desconocimiento general sobre las biotoxinas, de cómo llegan estas a los alimentos y de cómo pueden afectar a la salud. A ello contribuyen la escasa divulgación por parte de autoridades y medios de comunicación. Las noticias suelen limitarse a anunciar la presencia de la marea roja y señalar que hay biotoxinas en el agua que impiden la extracción del marisco. Por supuesto que también se publican artículos con más detalles acerca de los episodios tóxicos en las rías y los riesgos de las biotoxinas, pero son los menos.

Algunas especies de microalgas producen potentes venenos o toxinas. Cuando estas microalgas son filtradas por los mejillones y otros bivalvos, las toxinas se acumulan en sus tejidos y se transmiten a niveles superiores de la red alimentaria y al hombre. Las toxinas son tan potentes, que no se requieren elevadas concentraciones de microalgas, ni formación de mareas rojas, para que los bivalvos se conviertan en no aptos para el consumo humano. A estas proliferaciones, frecuentemente no acompañadas de producción de elevadas biomasas, las denominaremos Episodios de Algas Tóxicas.

(Reguera y col. 2009)

Proyecto de divulgación de Bioimaxe en colaboración con Ardora Formación y Servicios, financiado por FECYT. El documental fue reconocido con una mención honorífica en los Premios Prismas de Divulgación de la Casa de las Ciencias de A Coruña, y premiado con la Barandilla de Bronce en el Ciclo Internacional de Cine Submarino de Donostia-San Sebastián, ambos en 2017.

Para contribuir a la divulgación asesoramos desde el IEO de Vigo sobre los contenidos del documental «Mareas Vermellas» y la web asociada, explicando p. ej. las diferencias entre mareas rojas y episodios tóxicos. En él participamos instituciones de investigación, el control de biotoxinas marinas, el Consello Regulador de la DOP «Mexillón de Galicia» y el sector extractivo.

Les animo a verlo online en mareasvermellas o en youtube.

Las biotoxinas del marisco en Galicia las analiza semanalmente el INTECMAR (Vilaxoán, Xunta de Galicia) y el producto que luego se distribuye a los establecimientos autorizados lleva etiquetas que lo identifican como apto para el consumo. Así lo exigen y detallan las normativas europeas de higiene de los alimentos de origen animal (CE Nº853/2004 y 854/2004).

Dichas normativas recogen, además de los niveles máximos permitidos de biotoxinas, la clasificación de zonas de explotación según el grado de contaminación fecal del agua. En este caso se establecen cuatro clases (A, B, C, D). Sólo se puede comercializar el marisco A-C, siendo A la máxima calidad que permite su venta en fresco directa a través de centros de expedición de clase A donde se acondiciona, limpia, calibra, envasa y embala.

Mientras, el marisco de clase B y C posee niveles de contaminación fecal que impiden su venta directa y debe pasar por centros de depuración o reinstalación en aguas limpias durante periodos prolongados antes de su comercialización.

Los resultados de los análisis de fitoplancton tóxico, condiciones oceanográficas, biotoxinas, así como los cierres y aperturas de explotación se publican semanalmente en la web del INTECMAR.

Y la clasificación de las zonas de producción se revisa como mínimo cada trimestre mediante análisis microbiológicos y químicos del agua. Los cambios en dicha clasificación se publican en el Boletín Oficial de la Xunta de Galicia (DOG).

Ninguno de estos controles legales ni garantías sanitarias son aplicables al marisco furtivo.

Que nadie se haya muerto en Galicia por intoxicarse o que a usted nunca le haya pasado nada no sirve como garantía. Tampoco que nos juren que su origen y calidad son idóneos para el consumo. O lleva las etiquetas correspondientes que así lo demuestran o usted se fía y luego ya veremos.

Porque lo cierto es que sí ha habido intoxicaciones, sigue habiéndolas y las habrá si nos saltamos los controles sanitarios. Porque los únicos casos de intoxicaciones que conozco han estado asociados siempre a la ausencia de controles de biotoxinas o al marisco recogido o adquirido fuera de los cauces legales. Esto demuestra que nuestro sistema de control de biotoxinas funciona y es seguro.

Dentro de lo que cabe somos afortunados porque en Galicia las toxinas que predominan son las lipofílicas, causantes del síndrome diarreico (DSP), que puestos a elegir no son las peores del «catálogo». No se trata de alarmar sino de informar para prevenir.

En contra de lo que a veces piensa la gente, las ficotoxinas de los bivalvos no se eliminan con la depuración (que simplemente elimina bacterias y virus del aparato digestivo de los bivalvos), ni con la cocción. Es importante, pues, que los consumidores compren productos controlados, en establecimientos autorizados, con las correspondientes etiquetas en las mallas de envasado que así lo atestigüen.

(Reguera y col. 2009)

¿Qué organismos marinos pueden intoxicarnos? 

Tanto el pescado como crustáceos y moluscos pueden ser tóxicos dependiendo de la región del mundo que se trate. En el caso de Galicia el riesgo está en moluscos bivalvos filtradores como mejillones, almejas, berberechos, navajas, ostras, vieiras y zamburiñas. Se libran de esta lista otros organismos filtradores como los percebes, al menos por el momento.

¿Qué biotoxinas marinas existen en Galicia?

Las principales biotoxinas en Galicia son lipofílicas (ácido okadaico y dinofisistoxinas (síndrome diarreico, DSP); pectenotoxinas y yessotoxinas), amnésicas (ácido domoico: síndrome amnésico, ASP) y paralizantes (saxitoxinas: síndrome paralizante, PSP). Se trata de potentes neurotoxinas pero sus mecanismos de acción, síntomas de intoxicación y efectos sobre el organismo son diferentes. En el caso de las pectenotoxinas y yessotoxinas no está demostrada su toxicidad en humanos y son toxinas de acción rápida en ratones (Alfonso y col. 2014).

¿Cómo de potentes son las biotoxinas del marisco?

Pez globo (fugu). Fuente: animalgourmet.com

Lo suficiente para provocar la muerte en casos de intoxicaciones graves con las amnésicas y sobre todo las paralizantes. Veamos. Para calcular la toxicidad aguda de un compuesto se suele utilizar el valor LD50, que es la cantidad de un material determinado que provoca la muerte del 50% de un grupo de animales de prueba.

Para poner en contexto la toxicidad de las biotoxinas del marisco usaré la tetrodotoxina del pez globo, producida por bacterias endosimbiontes. En Japón se le conoce como fugu y la preparación de este manjar está restringida a chefs entrenados y con licencia para servir el plato porque si lo hacen mal te puedes morir.

Pues bien, según un listado de la Universidad Autónoma de Barcelona, los LD50 de la tetrodotoxina y las toxinas paralizantes (saxitoxinas) son iguales: 8.000 ng/kg. Las saxitoxinas son 1000 más tóxicas que el gas sarín y están clasificadas como armas químicas por la CWC (Chemical Weapons Convention).

Mientras, el LD50 de las diarreicas (ácido okadaico) es 200.000 ng/kg (25 veces menos potentes) y 3,6 mg/kg para las amnésicas (ácido domoico), 4.500 veces menos. Sin embargo, no por ello son menos peligrosas. Primero porque los valores de LD50 están calculados para ratones y son desconocidos en humanos. Y segundo porque el LD50 señala toxicidad aguda pero debemos considerar también los efectos subletales.

Por ejemplo, en el caso del ácido okadaico y dinofisistoxina-1 no hay registros de muertes en personas pero varios estudios en animales han demostrado su potencial genotóxico, promotor de tumores (EFSA, 2008).

La FAO publicó en 2005 un informe detallado sobre biotoxinas marinas disponible en fao.org. Comentarlo me llevaría varias entradas y no quiero perder el hilo de esta historia pero entre sus conclusiones destaco lo siguiente:

El consumo de diversos mariscos y pescados ocasiona mundialmente un número creciente de intoxicaciones en los seres humanos […] Por lo general sus efectos se observan como intoxicaciones agudas. Apenas se conocen los efectos resultantes sobre la salud de exposiciones episódicas y de la exposición crónica a niveles bajos de toxinas de algas. Estos últimos efectos pueden pasar sin ser informados por el o los individuos afectados o ser objeto de diagnósticos médicos erróneos.

(FAO, 2005)

¿Qué intoxicaciones han sucedido en Galicia o por culpa del marisco gallego?

Gymnodinium catenatum. Autor: S. Fraga

Les pondré varios ejemplos que conozco a través de la prensa, artículos científicos y de divulgación, pero que seguramente no han sido los únicos.

El episodio más conocido fue el de 1976 al cual dediqué dos entradas [1 y 2], debido a toxinas paralizantes (saxitoxinas) en mejillones de las Rías Baixas, por culpa del dinoflagelado Gymnodinium catenatum.

Un total de 176 personas necesitaron atención hospitalaria en España y varios países europeos. No hubo víctimas mortales pero provocó una grave crisis para el sector mejillonero gallego y puso en marcha el control de biotoxinas y fitoplancton tóxico de nuestra región (Reguera y col. 2009).

El síndrome PSP, del cual he tratado en este blog en varias ocasiones, puede ocasionar la muerte en los casos de intoxicación más graves, tanto en humanos como fauna marina. Los síntomas de intoxicación por saxitoxinas pueden durar varios días e incluyen debilidad muscular, entumecimiento, hormigueo, picazón, pérdida de sensibilidad táctil, ceguera temporal, sensación de liviandad (como si flotara uno en el aire). En casos extremos, tras 2-24 horas, la parálisis muscular se extiende y agrava provocando dificultades respiratorias severas y la muerte.

Dinophysis acuminata. Autor: F. Rodríguez

En 1981 sucedió un nuevo episodio de intoxicación por mejillón gallego de origen desconocido. Afectó a unas 5000 personas en la costa levantina española y los síntomas eran como de gastroenteritis (Reguera y col. 2009).

Tras descartar una contaminación bacteriana se asumió, por analogía con brotes en otros países como Francia, Holanda y Japón, que se trataba de toxinas lipofílicas (ácido okadaico). Estos compuestos son producidos por dinoflagelados del género Dinophysis.

Se piensa que los síntomas de malestar gastrointestinal asociados a bacterias en el pasado han sido a menudo debidos a estas toxinas. En 1995 sucedieron tres nuevos brotes de DSP con 61 afectados por consumo directo de mejillón de roca y de batea. Los síntomas típicos del síndrome diarreico son náuseas, vómitos, diarrea, dolor abdominal, que suelen aparecer entre 30 minutos y pocas horas después del consumo de marisco. A veces se observa fiebre, escalofríos y dolor de cabeza. Las intoxicaciones más graves requieren de hospitalización pero los síntomas remiten en 2-3 días.

Y ahora vamos con otros casos más recientes.

Agosto de 2014. Dos personas fueron atendidas en el hospital do Barbanza (Ribeira, A Coruña), con síntomas de intoxicación (confusión, pérdida de memoria) por toxinas amnésicas (ácido domoico, síndrome ASP).

Luego confesaron haber comprado mejillones directamente a un bateeiro en la Ría de Arousa (Faro de Vigo, 07/VIII/2014). Los congelaron por un tiempo y luego se cocinaron una paella.

Pseudo-nitzschia sp. Autor: F. Rodríguez

Aquellos mejillones se habían cosechado durante un episodio de ASP asociado a diatomeas del género Pseudo-nitzschia. En Californintoxication les hablé de las intoxicaciones ASP, que pueden resultar letales para las personas y la fauna marina.

Los síntomas característicos son gastrointestinales (vómitos, diarrea, dolor abdominal), y/o neurológicos (confusión, pérdida de memoria). En casos graves se observan convulsiones, coma y muerte tras 24-48 horas.

Julio de 2015. Varios miembros de al menos seis familias ingresaron en el hospital de Cee con síntomas de vómitos, diarrea, mareos y malestar general. El motivo fueron unos berberechos que recogieron en la playa de Carnota. Al mismo tiempo se registraron otros casos de intoxicaciones en Fisterra, Caldebarcos (Carnota) y O Ézaro (Dumbría). El motivo: niveles de ácido okadaico (Dinophysis, DSP) seis veces superiores al máximo legal. Así lo describía un vecino de Cee en La Voz de Galicia (08/VII/2015):

«A miña filla estao a pasar mal. Leveina a urxencias e o médico, ademais de darlle tratamento, díxolle que non podía comer nada ata hoxe [por ayer] á noite», cuenta este padre de una familia a la que el marisco tóxico le ha afectado de manera muy irregular. «Foron uns berberechos que apañaron o sábado na praia de Carnota. Á filla fixéronlle dano, a súa nai tamén e, en cambio, aos meus pais, non. Eu tíñaos para comer con arroz, pero penso que non o vou facer».

Mayo de 2016. Cinco miembros de una misma familia fueron hospitalizados en Cee por intoxicación con toxinas lipofílicas después de comer cinco kilos de mejillones, también en paella, que habían adquirido a una vendedora ambulante. Los mejillones procedían de la Ría de Camariñas, cerrada por niveles elevados de dichas toxinas, 10 veces superiores al máximo legal permitido (La Voz de Galicia, 28/V/2016).

La mayoría de seguidoras y seguidores del blog seguramente trabajáis, estudiáis o tenéis mucho interés en temas relacionados con el mar y una opinión informada sobre este asunto. Pero mi intención es que esto llegue también a las personas que se comerían los platos de marisco que les servían al inicio porque desconocen los riesgos.

No pretendo aleccionar a nadie, solamente informar y luego que cada quien decida lo que hace con su salud, pero sabiendo de antemano los riesgos que asume.

Mural de Joseba Muruzábal en Ordes (A Coruña), perteneciente a la serie «Fenómenos rurales». Fuente: El Confidencial

En Galicia coexisten el medio urbano y rural en muchas familias y gracias a ello nos beneficiamos de un trasiego constante de productos de tierra y mar a través de lazos de parentesco o amistad. Todos conocemos a alguien que tiene una huerta y que nos regala a los urbanitas fruta, verdura, legumbres, huevos, etc. A cambio los urbanitas ponemos el vino y/o el postre, qué menos!

También es común, al menos en las poblaciones costeras, que los productos del mar entren en estos intercambios como regalos o a cambio de dinero. En esta categoría entran el pescado, crustáceos y moluscos, más apreciados y que pueden alcanzar un valor importante que «promueve» su comercio furtivo.

El marisco no es imprescindible para vivir, para muchas personas es todo un lujo. Y aquí está la contradicción que no alcanzo a comprender.  Si como consumidores nos preocupamos cada vez más por el origen y la trazabilidad de los alimentos ¿por qué jugarse la salud con el marisco furtivo?

Las toxinas del marisco ni se ven, ni se huelen, ni tienen sabor. En Latinoamérica las llaman por su nombre: veneno. Porque eso es lo que son, un veneno oculto en algunos productos del mar y como tal su presencia debe estar controlada de forma muy estricta para evitar intoxicaciones.

El control de biotoxinas lo ejercen las autoridades competentes, la Xunta de Galicia en nuestro caso. La identificación y cuantificación de las toxinas y sus niveles en los alimentos necesita de análisis previos en los laboratorios del INTECMAR mediante métodos de referencia aprobados en la Unión Europea.

Esos análisis de biotoxinas salen de nuestros impuestos y la seguridad de que el marisco es apto para el consumo depende de ellos y no de la palabra de familiares, amigos o vendedores ambulantes. No jueguen con la salud porque no merece la pena.

Fuente: Faro de Vigo (22-I-2018)

Referencias:

-Ríos A. y col. A Ciencia do Mexillón: ciencias e tecnoloxías mariñas implicadas no cultivo, transformación e comercialización do mexillón (Mytilus galloprovincialis). DIVULGAMAR-CSIC (Instituto de Investigaciones Marinas, IIM), pp. 135 (2010)
-Alfonso A. y col. Yessotoxins and Pectenotoxins. Seafood and Freshwater Toxins, pp. 657-676. DOI: 10.1201/b16662-27  (2014)
-Marine biotoxins in shellfish – Domoic acid. Scientific Opinion of the Panel on Contaminants in the Food Chain (Question No EFSA-Q-2006-065H). The EFSA Journal 1181: 1-61 (2009)
-Marine biotoxins in shellfish – okadaic acid and analogues. Scientific Opinion of the Panel on Contaminants in the Food chain (Question No EFSA-Q-2006-065A).  The EFSA Journal 589: 1-62 (2008)
-Martín Cerdeño V.J. Consumo de pescados y mariscos en España. Un análisis de los perfiles de la demanda. Distribución y Consumo, vol. 4, pp. 18 (2017)
-Pitschmann V. Overall View of Chemical and Biochemical Weapons. Toxins 6: 1761-1784 (2014)
-Reguera B. y col. Episodios de fitoplancton tóxico en la Ría de Vigo. LA RÍA DE VIGO. Una aproximación integral al ecosistema marino de la Ría de Vigo. Instituto de Estudios Vigueses. pp 153-199 (2009)