Entradas

Hace 66 millones de años

Imagen de portada: fósiles de ammonites (Speetoniceras sp.). [Autor: Daderot (Wikimedia)].

«Gee, I wish we had one of them doomsday machines…»

Dr. Strangelove (1964).

Leyendo artículos científicos uno se encuentra a veces expresiones y palabras sin traducción directa del inglés. Una de ellas es Strangelove ocean, en referencia a la mítica película «Dr. Strangelove» (¿Teléfono rojo? viajamos hacia Moscú), de Stanley Kubrick (1964).

Peter Sellers caracterizado como el Dr. Strangelove en esta fabulosa sátira antibelicista. La cita que escogí para el comienzo de la entrada me parece desternillante. Aquí tienen la escena para entenderla (min 3:33).

El Dr. Strangelove es un científico que trabajó para los nazis y luego como director de las investigaciones y desarrollo de armamentos de E.E.U.U. Él es quien confirma la posibilidad de que la U.R.S.S. posea el «artefacto definitivo» («doomsday machine»), una bomba nuclear que arrasaría la vida sobre La Tierra.

Dicha escena ocurre durante el gabinete de crisis reunido en el Pentágono.

Pero una catástrofe similar también podría llegar del espacio y de hecho originó la última extinción masiva en La Tierra. Hace unos 66 millones de años el impacto del asteroide de Chicxulub (Yucatán, México) provocó lo que se conoce como un invierno nuclear: oscuridad prolongada.

Si por algo es famoso aquel cataclismo es porque finiquitó a los dinosaurios. Una extinción en masa, aunque selectiva, al final del Cretácico, que acabó con el 70% de las especies sobre el planeta. Ello incluye a los ammonites y al nanoplancton calcáreo responsable de los depósitos de carbonato cálcico (creta) que dieron nombre a dicho período.

Los restos geológicos indican tsunamis, incendios y terremotos devastadores, pero las causas que llevaron a la extinción masiva de la vida en tierra y mar son menos evidentes. Una explicación propuesta en los años 80′ fue la del colapso de la fotosíntesis en el océano: Strangelove ocean (océano muerto).

Los motivos: el bloqueo de la luz solar tras el cataclismo impidió la fotosíntesis en el océano por las cenizas y gases emitidos a la atmósfera. Sin mencionar la destrucción temporal de la capa de ozono, calentamiento global, lluvia ácida y brusca acidificación del océano.

El cráter de Chicxulub tiene 200 km de diámetro. Fuente: ptcy.com.mx

El indicio: la caída del gradiente de δ¹³C característico entre las conchitas de foraminíferos planctónicos (que habitan en la capa superior del océano) y bentónicos (en el fondo).

Dicho gradiente se mantiene por efecto de la fotosíntesis de las microalgas y refleja también la eficiencia de la bomba biológica de carbono (es decir: el carbono orgánico exportado desde la superficie al fondo del océano). Por tanto su caída se interpretó como el colapso de la fotosíntesis.

Para entender esto del gradiente vamos a explicar tres cosas, por este orden: 1) qué es el δ¹³C, 2) qué efecto que tiene sobre él la fotosíntesis y 3) qué indica el δ¹³C de las conchitas de los foraminíferos.

  1. δ¹³C es la diferencia entre los isótopos ¹³C y ¹²C. Su abundancia relativa es 98,89% para el ¹²C y 1,10% para el ¹³C. El resto es ¹4C (radiactivo y minoritario). Si una muestra está enriquecida en ¹²C su δ¹³C será, en consecuencia, menor. Aquí tienen la fórmula: δ¹³C=[(¹³C-¹²C)muestra/ (¹³C-¹²C)estándar]x1000‰
  2. Las microalgas cuando incorporan CO2 en la fotosíntesis discriminan a favor del isótopo ligero ¹²C, retirándolo así del agua y enriqueciendo a esta en ¹³C. Resultado: el agua superficial tiene δ¹³C más altos en comparación a las aguas profundas. Además, la remineralización de la materia orgánica procedente del fitoplancton (carbono orgánico exportado) libera nuevamente el ¹²C al agua disminuyendo el δ¹³C profundo.
  3. El δ¹³C en las conchas de los foraminíferos refleja el δ¹³C de las aguas en las que habitan.

Estas tres cuestiones nos ayudan a entender el gradiente de δ¹³C entre especies planctónicas y bentónicas de foraminíferos. En un océano vivo, el δ¹³C de las conchas planctónicas es superior a las bentónicas debido a la producción primaria y a la exportación de la materia orgánica al fondo.

Tras el impacto en el Yucatán, el gradiente de δ¹³C entre las conchas planctónicas y bentónicas se redujo drásticamente debido exclusivamente a la disminución del δ¹³C en las planctónicas. Este fue el indicio en el que se basó la hipótesis del Strangelove ocean (océano muerto: sin fotosíntesis).

Sin embargo, los foraminíferos bentónicos (a diferencia de los planctónicos), no sufrieron extinciones. Y esto no cuadra con un Strangelove ocean dado que su supervivencia depende estrechamente de la materia orgánica que cae desde la superficie: del fitoplancton.

Imagen SEM de un cocolito perteneciente a microalgas calcáreas del período Cretácico (origen: Folkestone Chalk). Fuente: age.fotostock

Alegret y col. (2012) propusieron otra hipótesis: la brusca acidificación (y no la oscuridad, que habría durado 1-2 años), fue el motivo de la extinción masiva de la vida en el océano, afectando al nanoplancton calcáreo y al resto del ecosistema en cascada.

La reducción del gradiente de δ¹³C entre foraminíferos planctónicos y bentónicos indicaría una reducción moderada y regional de la materia orgánica exportada (bomba biológica menos eficaz), pero no de la producción primaria que se habría recuperado rápidamente.

De lo contrario la catástrofe para la vida habría sido aún mayor y los foraminíferos bentónicos se habrían extinguido masivamente.

¿Y cómo afecta al δ¹³C el hecho de que la bomba biológica sea menos eficaz? Si la materia orgánica se remineraliza en aguas superficiales (y no se exporta tanto al fondo) el ¹²C se libera más en dicha zona y se reduce el gradiente de δ¹³C entre foraminíferos planctónicos y bentónicos.

La propia Laia Alegret explicó con lujo de detalles el tema de la acidificación al final del Cretácico y sus trabajos sobre foraminíferos en una entrevista reciente en Ciencia.es (Eventos climáticos y de extinción a través de los microfósiles).

Laia Alegret es paleontóloga y profesora titular en el departamento de Ciencias de La Tierra (Universidad de Zaragoza). Fuente: Ciencia.es

La oscuridad de aquel invierno nuclear habría durado 1-2 años, a lo sumo. Y la acidificación del océano afectó solo a la capa superficial con extinciones catastróficas y rápidas tras el impacto del asteroide.

La desaparición asociada del nanoplancton calcáreo facilitó que otros grupos de microalgas, como los dinoflagelados, aprovechasen las condiciones eutróficas del nuevo océano para proliferar.

Los efectos sobre la diversidad de las comunidades marinas se prolongaron en el tiempo cientos de miles de años, a diferencia de la extinción masiva e inmediata.

El desequilibrio ecológico y la pérdida de diversidad en el plancton habría disminuido la eficacia de la bomba biológica, aunque con grandes diferencias a nivel local en los océanos.

A esta segunda hipótesis se la denominó luego océano heterogéneo: reducción regional de la bomba biológica.

Una tercera hipótesis es la del oceáno vivo: recuperación global de la productividad primaria y reducción global de la bomba biológica como explicación de la disminución del gradiente de δ¹³C.

Todo esto sigue siendo objeto de estudio y de debate. En 2019 Henehan y col. publicaron los resultados de un modelo y datos experimentales que darían la razón a un escenario intermedio: reducción global de la productividad primaria y de la bomba biológica.

Según estos autores la hipótesis del océano vivo no bastaría por sí sola para explicar los resultados obtenidos a partir de los fósiles de foraminíferos.

Además de una intensa remineralización de la materia orgánica en superficie sería también necesaria una reducción global del 50% en la productividad primaria para explicar la evolución de los gradientes de δ¹³C y de pH estimados en aquel océano que renacía de sus cenizas nunca mejor dicho tras el invierno nuclear.

Referencias:

  • Alegret A. y col. End-Cretaceous marine mass extinction not caused by productivity collapse. Proc. Natl. Acad. Sci. U.S.A. 109:728–732 (2012).
  • Henehan M.J. y col. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proc. Natl. Acad. Sci. U.S.A. 116:22500-22504 (2019).
  • Vellekoop J. y col. Ecological response to collapse of the biological pump following the mass extinction at the Cretaceous-Paleogene boundary. Biogeosciences Discuss. doi:10.5194/bg-2016-275 (2016).

Enterrados vivos

Una experta en hibernación:
la marmota.

Muchos seres vivos pasan por periodos de dormancia a lo largo del año para sobrevivir a épocas con poco alimento ó bajas temperaturas…como las marmotas, que hibernan desde antes del invierno hasta la primavera.

Esto supone una ventaja adaptativa y se ha relacionado en mamíferos con su capacidad para sobrevivir al impacto del meteorito de Chicxulub que acabó con los dinosaurios y el 75% de la vida hace 65 millones de años.

En las microalgas también existen células en estado de vida «suspendida». En particular en los dinoflagelados y diatomeas, que alteran su forma y reducen su actividad para convertirse en «bellas durmientes» en el fondo del mar.
Arriba: células vegetativas de la diatomea Chaetoceros radians. Abajo, las esporas
de resistencia de la misma especie. Disponible en http://micro.sakura.ne.jp/bod/marine.htm

En el caso de las diatomeas forman esporas de resistencia que pueden ser parecidas ó distintas a las células «normales». Esas esporas acumulan reservas de energía antes de hundirse en el sedimento, a la espera de que las condiciones ambientales cambien (más luz, nutrientes, temperatura…) y poder retomar su vida.

Los dinoflagelados por su parte, tienen formas de resistencia también llamadas «quistes», que pueden ser de varios tipos.Los quistes temporales son formas de transición en respuesta a estrés ambiental y su duración es breve. Por ejemplo, al aislarlos en el laboratorio, muchos dinoflagelados tecados forman este tipo de quistes en los que la célula se libera de sus placas de celulosa y se convierte en una forma cocoide inmóvil.

Pyrocystis. Autor: F. Rodríguez

Los quistes vegetativos, aunque inmóviles, son activos metabólicamente. En algunos dinoflagelados incluso son la forma más habitual en su ciclo de vida, como por ejemplo en Symbiodinium (dinoflagelados simbiontes que viven en los corales), ó en el hermoso género de vida libre Pyrocystis.

En cambio, los quistes de reposo se forman tras la fusión sexual de dos células y pueden permanecer latentes durante años y décadas. Si nadie perturba su «sueño», los quistes seguirán enterrados vivos en el sedimento, y esto sucede en las zonas costeras de casi todo el planeta. Luego, al despertar de forma simultánea estos quistes pueden servir como la «mecha» que dispare una proliferación de dinoflagelados, aparentemente desde «la nada».

 

Quiste «Spiniferites» típico del
género de dinoflagelados Gonyaulax.
Imagen: Graham Williams.

Aunque también pueden seguir enterrados para siempre jamás. Dado que su cubierta celular es muy resistente el registro fósil conserva numerosos quistes de dinoflagelados desde hace 200 millones de años.

Hasta hace poco se pensaba que el límite de tiempo que resisten «viables» los quistes era como mucho de unos 50 años. Pero en 2011, Lundholm y colaboradores publicaron un trabajo en el que germinaron quistes de dinoflagelados con un siglo de antigüedad !!

En la revista Nature Communications, podemos consultar gratis los primeros resultados en 2011 y observar un quiste centenario y la célula germinada del dinoflagelado Pentapharsodinium dalei. http://www.nature.com/ncomms/journal/v2/n5/full/ncomms1314.html

Muestrearon en Suecia, en el fiordo Koljö, indicado en esta imagen de Google Maps. Los quistes permanecieron intactos durante un siglo, condenados en el fondo porque en el fiordo Koljö no hay apenas «bichos» que remuevan y devuelvan los quistes a la superficie.

La falta de oxígeno también fue importante para la conservación de los quistes en el sedimento…pero una vez en el laboratorio, las condiciones adecuadas de luz, nutrientes y temperatura despertaron a los quistes y dieron lugar a células completamente normales.

Ejemplos de quistes en dinoflagelados, aislados en Galicia (Autora: Isabel Bravo). A) Protoperidinium conicum. B) Protoperidinium sp. C) Alexandrium minutum. D) Protoperidinium oblongum.
E) Alexandrium tamarense.

El impacto del meteorito de Chicxulub tuvo la potencia de mil millones de bombas atómicas como la de Hiroshima y se piensa que los incendios que provocó en todo el planeta oscurecieron el sol hasta 9 meses, sin una luz normal al menos hasta una década después.

Los efectos fueron devastadores sobre el clima y la circulación de los océanos. El descenso de temperaturas y la falta de luz y alimentos provocó la extinción masiva de la vida…

En el mar la vida planctónica también se extinguió en su mayor parte…

Excepto para las diatomeas y dinoflagelados cuyas esporas y quistes descansaron en el fondo ajenas a todo, soñando con aquella canción de REM…

It’s the end of the world as we know it (and I feel fine…)…

 

 

Referencias:

A classification of living and fossil dinoflagellates. Fensome RA, Taylor FJR, Norris G, Sarjeant WAS, Wharton DI, Williams GL. Micropaleontology Special Publication Number 7, American Museum of Natural History. (1993).
-Lundholm N, Ribeiro S, Andersen TJ, Koch T, Godhe A, Ekelund F & Ellegaard M. Buried alive – germination of up to a century-old marine protist resting stages. Phycologia 50(6): 629-640. (2011).