Entradas

El truco más bello de la luz

Imagen de portada: playa de Samil [autor F. Rodríguez]

Quiero que veas el atardecer cuando el sol empieza a caer
Y tras él las farolas se encienden, el cielo se prende, se tiñe de tonos pastel

Haz de luz (Rayden, 2019)

El truco más bello de la luz (La plus belle ruse de la lumière) se pregunta por el sentido del universo y si la vida es una anomalía del sistema. La respuesta de su autor, el astrofísico David Elbaz, es rotundamente NO. La vida no es una excepción. Producir luz es la lógica que sigue el universo y los seres vivos también: las células son una fuente muy eficaz de fotones en el infrarrojo. A igual masa emitiríamos más partículas de luz que el Sol, en concreto ¡¡200.000 veces más!!. Así pues, el truco más bello de la luz es la vida.

La plus belle ruse de la lumière, David Elbaz (2021). Fuente: Babelio

La Tierra mantiene su química en contínua agitación (ciclos geoquímicos) facilitando la disponibilidad de nutrientes para los seres vivos. Estos, a su vez, forman parte de dichos ciclos modificándolos y acelerándolos con su actividad. Este es el argumento central en la entrada de hoy. Los seres vivos damos «vidilla» al planeta: consumimos energía y nutrientes. Absorbemos, reciclamos y devolvemos toda esa energía y nutrientes al medio. Y lo hacemos gracias a una actividad continua e incansable grabada en los genes.

La vida surgió muy pronto gracias a la energía del planeta, el Sol y las fuerzas de interacción gravitatorias que alimentan la actividad de atmósfera, mar y superficie terrestre. Fruto de ella surgieron hace unos 3800 m.a. las primeras formas de vida y con ellas la biogeoquímica. Mucho antes (hace 4400 m.a.) ya se habían formado los océanos…

Aquel primitivo mar debió ser de un profundo azul. Ese color debido a las propiedades ópticas del agua podemos contemplarlo en la superficie del océano abierto que, aislada por la temperatura y escasa en nutrientes, frena el crecimiento del fitoplancton. Esto se debe a que los flujos de materia orgánica y nutrientes van hacia abajo por el consumo de las microalgas y las migraciones verticales de zooplancton, peces e invertebrados. A dicho mecanismo se le conoce como «bomba biológica» (las flechas amarillas descendentes en este esquema).

Cadena trófica marina con los flujos de nutrientes y carbono. La suma de dichos flujos mediados por seres vivos es la «bomba biológica». Autor: Office of Biological and Environmental Research of the U.S. Department of Energy Office of Science. Fuente: Wikimedia Commons

Para compensar lo que se pierde en las profundidades existen fenómenos geofísicos que aportan nutrientes en superficie como el afloramiento, giros oceánicos, vientos, mareas, etc. Y también entran en juego otros seres vivos modificando el medio y favoreciendo el crecimiento del fitoplancton. ¿De quiénes se trata? aquí van algunos ejemplos…

Las ballenas. Son una «bomba biológica» pero al revés; algo así como un afloramiento vivo. Se alimentan de zooplancton y peces mesopelágicos, liberando cuando ascienden a la superficie plumas fecales flotantes (cacas a la deriva) ricas en nitrógeno, fósforo y metales traza que estimulan la producción primaria. Existen pocos estudios cuantitativos, pero en el golfo de Maine (Norteamérica) se ha estimado que ballenas (y focas, que también se desfondan en el mar como diría una vecina mía) pueden aportar hasta 2,3 toneladas de nitrógeno anuales a la zona eufótica, superando a los aportes fluviales. A esto se le conoce como «bomba ballena» (en inglés suena más serio: «whale pump»).

El krill. El krill antártico (Euphausia superba) es un pequeño crustáceo que sustenta a las ballenas y consigue su alimento tanto en el fondo marino como en superficie (de microalgas, detritus, zooplancton). Luego, durante la excreción y alimentación («sloppy feeding» que es como dejar flotando los restos de la comida) liberan nutrientes que impulsan el crecimiento del fitoplancton. Además, las migraciones verticales del krill pueden mezclar aguas profundas ricas en nutrientes (aquellas bajo la termoclina) con capas superiores más iluminadas, estimulando aún más la producción primaria. Las ballenas y su rol fertilizante en el océano explican la paradoja del krill: el declive de las ballenas por su caza indiscriminada ha provocado un descenso del krill.

La «bomba ballena» es la explicación de que a pesar de ser consumidoras de krill y peces, las ballenas sostengan con su actividad a sus propias presas, estimulando el crecimiento del fitoplancton al fertilizar la superficie del mar con sus «plumas fecales». Fuente: stopkillingwhales

Las aves marinas: hablemos de gaviotas. Además de bonitas (siiií, ¡bonitaaaas! les gusta tu bocadillo igual que a ti) sus excrementos o «guano» contienen nutrientes (sobre todo amonio, ácido úrico, proteínas y fosfato), que contribuyen al desarrollo del fitoplancton. Así lo han demostrado varios estudios, entre ellos uno muy reciente en la ría de Vigo (Justel-Díez y col. 2023). En él, tras estimar niveles realistas de guano en el mar cerca de las islas Cíes (a partir de los datos de su colonia de gaviotas patiamarillas, Larus michahellis) demostraron una respuesta positiva de las poblaciones del fitoplancton (en particular diatomeas) y bacterias (Alteromonadales, Sphingobacteriales y Verrucomicrobia) tras añadir guano en agua de mar en varias épocas del año y condiciones experimentales.

Por tanto, las colonias de aves como las gaviotas de Cíes pueden tener efectos beneficiosos para los microorganismos marinos, que se transmiten a los niveles superiores de la cadena trófica.

Gaviota patiamarilla (Larus michaellis). Autor: P. Figueras. Fuente: cies.gal

Anchoas y bananas: primero las anchoas. Un estudio en la ría de Pontevedra (Fernández-Castro y col. 2022) descubrió aumentos nocturnos en la turbulencia de la columna de agua que no tenían explicación física (viento, mareas…). Aquella turbulencia se registró a lo largo de 2 semanas en toda la columna de agua (unos 30 metros) y la solución llegó cuando 2 años después examinaron el contenido de las muestras de arrastres de plancton. En ellas había concentraciones altas de huevos de anchoas (Engraulis encrasicolus).

No había lances de pesca con pruebas directas de los peces. Pero sí señales acústicas de su presencia y las puestas de huevos. Los arrastres de plancton de cada mañana confirmaron que la mayoría de huevos estaban en estadio F2 de desarrollo (4-14 horas tras la puesta) mientras que en un arrastre nocturno descubrieron huevos más recientes (F1: <4 horas). La interpretación fue que la agitación de los cardúmenes de anchoas durante la puesta era responsable de la turbulencia nocturna (o «marejadilla por frenesí sexual» como la llamaron en El País: 14-IX-2023). Las conclusiones de este estudio son rompedoras y novedosas ya que demuestran que la biología SÍ puede ser una fuente importante de mezcla en el océano y zonas costeras –al mismo nivel que fenómenos geofísicos como las tormentas-, contribuyendo al aporte de nutrientes y potencialmente al crecimiento del fitoplancton.

Aquí lo explica un vídeo divulgativo del proyecto REMEDIOS (con Beatriz Mouriño [subproyecto I: física, UdV] y Enrique Nogueira [subproyecto II: plancton, IEO-CSIC] como investigadores principales).

 

Lo de las bananas. Este trabajo les valió a sus autores un Ig Nobel en Física en 2023. En este blog ya explicamos qué son los Ig Nobel, en resumen se trata de una parodia de los Nobel, en el que se premian investigaciones que primero hacen reír y luego pensar. Una de sus autoras y coordinadora del trabajo, Beatriz Mouriño (UdV), lo explicó con todo lujo de detalles en una entrevista en Efervesciencia (23-XI-2023: min 45:25).

El equipo científico incluía personal del CIM (Universidad de Vigo), IIM-CSIC y el IEO-CSIC de Vigo, así como la Universidad de Southampton y el Swiss Federal Institute of Aquatic Science and Technology. La campaña se realizó en el buque oceanográfico Ramón Margalef (IEO-CSIC). Fuente: gobio.webs.uvigo

Beatriz señala lo absurdo de la gala, con tres investigadores del Imperial College de Londres disfrazados de bananas para la entrega de premios (un billete de 10 trillones de dólares de Zimbabue y un pack de “Ig Pseudo Cola”). En este enlace podéis ver el momento en el que presentan el Ig Nobel de Física y a los autores galardonados. Lo curioso es que este artículo sobre la turbulencia de las anchoas no tuvo apenas repercusión cuando se publicó en 2022 ¡¡pero el Ig Nobel lo puso en boca de todo el mundo un año después!!

Podríamos discutir hasta el infinito sobre formas de comunicar y divulgar ciencia: tantas como tipos de público, medios de comunicación y divulgadores. Este caso me parece un ejemplo perfecto de que los resultados de una investigación, por importantes que sean, no llegan a la sociedad sin la estrategia adecuada. Y los medios anglosajones la vieron clara: la connotación sexual y el humor captaron al público general, incluido al jurado de los Ig Nobel. Y es que la clave del éxito en comunicación es dar con «la tecla» para llegar a tu público para divulgar el contenido científico y sacar a la luz a las personas, el proyecto y las instituciones que hay detrás.

Referencias:

  • Elbaz D. La plus belle ruse de la lumière. Éditions Odile Jacob. pp. 336 (2021).
  • Fernández-Castro B. y col. Intense upper ocean mixing due to large aggregations of spawning fish. Nat. Geosci. 15:287–292 (2022)
  • Justel-Díez M. y col. Inputs of seabird guano alter microbial growth, community composition and the phytoplankton–bacterial interactions in a coastal system. Environ Microbiol. 25:1155–1173. (2023).
  • Pearson H.C. y col. Whales in the carbon cycle: can recovery remove carbon dioxide? Trends Ecol. Evol. 38(3) (2023).
  • Roman J, McCarthy JJ. The Whale Pump: Marine Mammals Enhance Primary Productivity in a Coastal Basin. PLoS ONE 5(10): e13255 (2010).
  • Savoca M.S. y col. Baleen whale prey consumption based on high-resolution foraging measurements. Nature 599:85–90 (2021)
  • Schmidt K. y col. Seabed foraging by Antarctic krill: Implications for stock assessment, bentho-pelagic coupling, and the vertical transfer of iron. Limnol. Oceanogr. 56(4):1411–1428 (2011).

 

Stranded things 2

Hoy hablaremos del peor caso de mortalidad de ballenas en la historia reciente. Ocurrió en la costa austral de Chile en marzo de 2015, detallado por un magnífico estudio de Häusserman y col. (2017) y un artículo de divulgación en la web Hakai Magazine: «Death by Killer Algae«. Se trata de un artículo fenomenal, también en formato audio, con imágenes de drones. Aquí relataré los hechos de forma más resumida, sin drones.

Cultivos de salmón en el fiordo de Aysén, al suroeste del Golfo de Penas. Fuente: Patagon Journal.

La Patagonia chilena cubre un área extensa, de difícil acceso y poco poblada. Su línea de costa con 80.000 km debido a numerosos fiordos, islas y canales, equivale a 2 veces la circunferencia de la Tierra.

En este territorio, en concreto en el Golfo de Penas (región de Aysén, entre 46º30’S y 48ºS de latitud), un muestreo de buceo de invertebrados dirigido por la Dra. Vreni Häusserman, descubrió en abril los primeros restos de ballenas Sei: alrededor de 30 en dos zonas del golfo de Penas separadas por 200 km.

Cadáveres de ballenas Sei documentados por medios aéreos en Seno Escondido (golfo de Penas). Autora: V. Häusserman, Fuente: Fig. 4 (Häusserman y col. 2017).

El hecho de que aparezcan ballenas muertas en la región es habitual, pero no en esa cantidad y en un período tan corto de tiempo.

El hecho de que estuviesen de lado o hacia arriba, con el vientre hinchado, indicaba que habían muerto en aguas cercanas, siendo luego arrastradas hacia la costa.

¿Qué pudo haberlas matado?

Häusserman y su grupo son expertos en invertebrados, no en fitoplancton, así que al principio no pensaron en las biotoxinas.

Sin embargo, la costa austral de Chile se ve afectada todos los años por proliferaciones tóxicas -con el consiguiente riesgo para la salud pública, economía local y fauna marina-, motivo por el cual las autoridades chilenas mantienen programas de monitoreo de «Mareas Rojas», mediante organismos como el Instituto de Fomento Pesquero (IFOP) y el Servicio Nacional de Pesca y Acuicultura (SERNAPESCA).

Para descubrir al asesino había que acumular todas las pruebas en el escenario del crimen. Semanas después, en el mes de mayo, una expedición conjunta de SERNAPESCA, Armada de Chile y PDI, tomó muestras de fitoplancton y de mitílidos en la costa, así como muestras de las ballenas para estudios genéticos, de huesos del oído y contenidos estomacales para la determinación de biotoxinas. En este vídeo pueden ver imágenes del muestreo. El olor debió ser importante.

En junio, Vreni Häusserman junto su colega Carolina Gutstein (experta en tafonomía para indagar, entre otros asuntos, en las causas de las muertes) y un estudiante, realizaron vuelos en avioneta para contabilizar el número de cadáveres varados en el Golfo de Penas. Llevaban contabilizados 70 ejemplares cuando en medio del silencio alguien exclamó: «Oh, mierda, esto es una pesadilla«.

Documentaron 343 cadáveres de ballenas Sei (Balaenoptera borealis), junto a otras 17 de distintas especies. La tabla que recoge esta información en Häusserman y col (2017) es la más triste que he visto nunca en un artículo científico y ocupa 14 páginas !!

¿Qué fue lo que descubrieron en las muestras de 2015?

Ninguno de los cadáveres estudiados en mayo de 2015 mostró signos externos de enfermedad, daños físicos (ataques de predadores como las orcas), o en los huesos del oído (por culpa de explosiones). Tampoco murieron de hambre ya que poseían suficiente grasa y sus estómagos estaban repletos.

Alexandrium catenella (imagen de epifluorescencia, teñido con calcoflúor). Autor: Pablo Salgado.

La hipótesis de una enfermedad vírica o bacteriana no se pudo excluir al 100% debido al grado de descomposición.

Otras causas como daños por explosiones submarinas se descartaron ante las pruebas circunstanciales.

Una mortandad masiva sincronizada (entre febrero y abril) a lo largo de una región tan extensa sólo podría tener una causa…

Los análisis de toxinas, tanto en mitílidos recogidos en la zona como en los contenidos estomacales de 2 ejemplares, arrojaron resultados positivos para PST y AST (Paralytic shellfish toxins & Amnesic shellfish toxins: toxinas paralizantes y amnésicas).

Los datos disponibles del monitoreo de toxinas en marzo de 2015, 120 km al norte del Golfo de Penas, demostraron niveles 10 veces superiores a los normales de toxinas paralizantes (saxitoxinas), y una presencia abundante del dinoflagelado Alexandrium catenella.

Dichos muestreos no detectaron toxinas amnésicas (ácido domoico).

Langostino de los canales (Munida gregaria). Fuente: Shallow Marine Surveys Group.

A la vista de todo ello Häusserman y col (2017) atribuyeron en su trabajo la muerte de las ballenas a las toxinas paralizantes.

El Golfo de Penas parece ser una zona de alimentación importante de ballenas Sei, sobre todo en aquellos años donde abunda una de sus presas principales, el langostino de los canales (Munida gregaria, conocido en inglés como lobster krill).

Dicho crustáceo forma enjambres en su fase pelágica, que pueden alimentarse de fitoplancton, incluidos dinoflagelados tóxicos como A. catenella, acumulando sus toxinas y actuando como vector hacia niveles tróficos superiores (McKenzie & Harwood, 2014).

Posible relación con «El Niño» y el calentamiento global

Meses antes de descubrir los varamientos, las condiciones climatológicas en la zona eran anómalas, coincidiendo con el desarrollo del mayor fenómeno de «El Niño» registrado hasta la fecha, en septiembre de 2014.

Osos comiéndose los restos de una ballena en la bahía Larson (Alaska). Fuente: NOAA.

El suceso de Chile coincidió con otro caso de mortandad de ballenas en Alaska (38 ejemplares, incluyendo ballenas jorobadas), a la vez de una proliferación masiva y prolongada de Pseudo-nitzschia (diatomeas productoras de ácido domoico) durante un calentamiento anormal del Pacífico por culpa de «El Niño».

La conexión entre ambas mortalidades << a través de las alteraciones inducidas en el ecosistema marino por «El Niño» sobre las temperaturas, régimen de vientos y nutrientes en el Pacífico Este >> ha llevado a sugerir que los grandes mamíferos marinos ya son víctimas de los efectos del calentamiento global. Y esto es así porque se sospecha que el calentamiento global por causas antropogénicas podría ser uno de los responsables del aumento en la frecuencia e intensidad de «El Niño» en las últimas décadas.

El desarrollo de proliferaciones tóxicas puede pasarnos desapercibido si no disponemos de sistemas de vigilancia en el océano, pero los mamíferos marinos son muy sensibles a los cambios en dicho ecosistema. Por ello la bióloga marina Kathi Lefbvre (NOAA) los compara con el canario enjaulado en la mina en el artículo «Death by Killer Algae».

Sin embargo, las mortalidades de mamíferos marinos por culpa de las biotoxinas no son nada nuevo. Hace millones de años ya sucedían proliferaciones de fitoplancton tóxico y el registro geológico guarda recuerdo de sus efectos sobre el ecosistema.

Fósiles de ballenas en Cerro Ballena (Atacama, Chile). Autor: Adam Metallo, Smithsonian Institution. Fuente: Hakai Magazine.

Buen ejemplo de esto son los restos fósiles de ballenas, focas y perezosos acuáticos descubiertos más al norte, en Cerro Ballena (región de Atacama) por Pyenson y col. (2014).

Lo que hoy es un desierto, hace 6-9 millones de años en el Mioceno era una llanura supramareal protegida por una barrera costera.

Y en ella se acumularon y preservaron dichos restos en cuatro estratos diferentes confirmando muertes simultáneas y varamientos en masa de mamíferos marinos y peces, en una área extensa y durante un período de 10.000 a 16.000 años.

Referencias:

-Hakai Magazine: «Death by Killer Algae», por Claudia Geib.
-Häusserman V. y col. Largest baleen whale mass mortality during strong El Niño event is likely related to
harmful toxic algal bloom. PeerJ. DOI: 10.7717/peerj.3123 (2017).
-NOAA declares deaths of large whales in Gulf of Alaska an unusual mortality event. https://alaskafisheries.noaa.gov/node/30342
-Pyenson N.D. y col. Repeated mass strandings of Miocene marine mammals from Atacama Region of Chile point to sudden death at sea.Proceedings of the Royal Society B: Biological Sciences 281(1781):20133316 (2014).

 

 

 

 

 

 

 

Stranded things

Los varamientos de cetáceos son un fenómeno misterioso y estremecedor.

Basada en hechos reales. Ambientada en Península Valdés (Chubut, Argentina), narra la historia del guardafauna argentino Beto Bubas, las orcas salvajes y un niño autista. (Gerardo Olivares, 2016).

Misterioso porque no existe una única causa para explicarlos y estremecedor porque afecta a seres que infunden admiración y con los que empatizamos de manera muy especial.

La mayoría de varamientos afectan a odontocetos (cetáceos dentados), el suborden al que pertenecen los delfines, orcas, zifios y cachalotes. Mientras, los registros de varamientos en misticetos (ballenas barbadas) han sido escasos históricamente.

Esto se justifica por el comportamiento social de los odontocetos, que tienden a vivir en grandes manadas, mientras que los misticetos suelen ser solitarios o formar grupos limitados. Además, los misticetos no usan la ecolocalización para navegar, un factor que suele mencionarse también para explicar los varamientos.

Sin embargo, en la última década se han registrado numerosos varamientos y mortandades de misticetos como veremos en esta entrada.

Entre los motivos más comunes se incluye una lista diversa como debilidad por enfermedad o escasez de comida, desorientación y lesiones (tempestades, ruido en el mar), accidentes (colisiones con embarcaciones), y por último un factor que nos atañe especialmente en este blog: las biotoxinas del fitoplancton.

Ballena gris (Eschrichtius robustus) con su ballenato (El Vizcaíno, Baja California, Mexico). Autor: J.E. Gómez Rodríguez. Fuente: Wikimedia commons.

Los mayores varamientos de misticetos se han registrado en Norteamérica y Sudamérica.

Por ejemplo, en 1999 y 2001 se contabilizaron en la costa noreste del Pacífico 283 y 386 varamientos respectivamente, en su mayoría de ballenas grises adultas. Las sospechas recayeron en ambos casos en síntomas de malnutrición (Rowntree y col. 2013).

Y en cuanto a mortandades por culpa de biotoxinas, el único caso confirmado hasta hace poco ocurrió en 1987 en Cape Cod (EEUU), con la muerte de 14 ballenas jorobadas tras comer caballas (Scomber scombrus) contaminadas con saxitoxinas: neurotoxinas paralizantes producidas en la zona por dinoflagelados del género Alexandrium.

Para que los cadáveres de las ballenas lleguen a la costa deben haber muerto en áreas someras cercanas a tierra ya que en aguas profundas tienden a hundirse y no dejar rastro en superficie.

En los últimos años en las costas de Argentina y Chile han sucedido numerosos varamientos de ballenas. En ambas regiones son recurrentes las proliferaciones de fitoplancton tóxico. ¿Podemos culpar a las toxinas de las muertes de ballenas? no es fácil conseguir evidencias pero hay muchos indicios que llevan a sospechar de ellas.

Península Valdés (Argentina)

Observando ballenas francas australes en Península Valdés. Autor: M. Catanzariti. Fuente: Wikimedia commons.

Las costas de Península Valdés en la Patagonia norte argentina (42-43º de latitud sur), son zona de cría de ballenas francas australes.

Pues bien, entre los años 2005-2014 se ha registrado una mortalidad sin precedentes (en total 649 ejemplares), en su mayoría ballenatos menores de 3 meses.

Las muertes se extienden a lo largo de varios meses, y han llegado a máximos de 120 individuos en el año 2012. Las hembras de estas ballenas se reproducen cada 3 años.

Con esas tasas de natalidad ya se imaginarán el impacto de esta catástrofe, que puede afectar a la recuperación de una especie cuya caza redujo su población original a un pírrico 20%.

En una reunión en 2010 de expertos de la Comisión Ballenera Internacional (IWC) se identificaron tres principales hipótesis: poco alimento (krill antártico: Euphausia superba), enfermedades e intoxicación por biotoxinas.

A dichas hipótesis se sumó una cuarta en otra reunión de la IWC en 2014: el estrés ocasionado por el acoso de las gaviotas cocineras (Larus dominicanus), que atacan a las ballenas para devorar su piel y grasa provocándoles heridas abiertas.

Frústulas de Pseudo-nitzschia en heces de ballenas francas australes (Eubalaena australis) de Península Valdés. (A-B) P. pungens, (C) P. australis, (D) complejo P. pseudodelicatissima. Fuente: Fig. 2 D’Agostino y col. (2015).

De entre esas 4 hipótesis, la de las biotoxinas es la que cobra más fuerza a raíz de estudios recientes como «Potentially toxic Pseudo-nitzschia species in plankton and fecal samples of Eubalaena australis from Península Valdés calving ground, Argentina» (D’Agostino y col. 2015).

Estos investigadores descubrieron abundantes frústulas de diatomeas del género Pseudo-nitzschia en heces de ballenas vivas y cadáveres, así como en muestras de fitoplancton durante el período que las ballenas visitan Península Valdés.

Pseudo-nitzschia incluye numerosas especies productoras de ácido domoico, una potente neurotoxina que las seguidoras y seguidores de este blog conocen muy bien, y que puede ocasionar graves perjuicios a la fauna marina.

D’Agostino y col. proponen que el zooplancton, alimento de las ballenas, actuaría como vector del domoico y para ello citan la detección de dicha toxina en muestras de zooplancton en la región por otros autores. Los ballenatos estarían expuestos de forma indirecta al domoico, a través de la leche materna y/o durante la gestación.

Además algunas ballenas, como las francas australes, practican un tipo de alimentación llamada «skim feeding» en la que barren la superficie (como un colador quitando la nata de la leche). Las cadenas de Pseudo-nitzschia pueden superar fácilmente las 300 micras de longitud y podrían ser filtradas directamente por las ballenas durante estos episodios. Aquí tienen a una ballena franca austral practicando «skim feeding«.

Ballena franca austral (Eubalaena australis) con una cría, cerca de la costa de Península Valdés, en medio de un bloom del dinoflagelado Lepidodinium chlorophorum. Autor: M. Sironi (Premio Hilda Canter-Lund 2009). Fuente: British Phycological Society.

Las ballenas francas australes también están presentes durante episodios de PSP (Alexandrium catenella) asociados a prohibiciones en la explotación de marisco. En los tejidos de algunos ejemplares muertos se han detectado tanto saxitoxinas como ácido domoico, aunque en niveles bajos.

En octubre de 2010 murieron 15 ballenas de todas las clases de edad (6 ballenatos, 7 juveniles y 2 adultos), un hecho típicamente asociado a proliferaciones tóxicas e inusual en Península Valdés.

Las concentraciones de Pseudo-nitzschia y A. catenella eran elevadas en aquel momento. Y en aquellas fechas se había observado «skim feeding» en los adultos.

Las imágenes de satélite (Wilson y col. 2015) confirman que los blooms de primavera de fitoplancton se han hecho más intensos en la región especialmente desde 2004, coincidiendo con la mayoría de las muertes:

<<649 ballenas muertas entre 2005-2014>> por 194 en los 30 años anteriores.

Durante uno de dichos blooms el investigador argentino Mario Sironi documentó la imagen de una marea verde de Lepidodinium chlorophorum, una especie de dinoflagelado no tóxica.

No parece que Pseudo-nitzschia sea responsable de los blooms más intensos en primavera, pero su abundancia ha aumentado notablemente en la última década y existe una correlación positiva entre 1) registros mensuales de muertes y 2) abundancia de Pseudo-nitzschia. No existe tal relación con A. catenella.

En conclusión: hay evidencias sobre la exposición de las ballenas a las biotoxinas y son varias las pistas que apuntan hacia el ácido domoico.

Golfo de Penas (Chile)

Ballena sei en Caleta Buena (norte del Golfo de Penas), abril 2015. Autor: K.-L. Pashuk. Fuente: Fig. 3 (Häusserman y col. 2017).

Mediados de abril de 2015. Durante una expedición de buceo para estudiar fauna bentónica al norte del Golfo de Penas aparecen los primeros restos de ballenas y esqueletos.

La alarma ante este descubrimiento puso en marcha, pocas semanas después, una expedición conjunta de SERNAPESCA (SERvicio NAcional de PESCA y acuicultura), la Armada de Chile y la PDI (Policía De Investigaciones de Chile, Departamento de Investigación Criminal).

Lo que documentaron por tierra, mar y aire fue el peor caso de la historia: la muerte de 343 ballenas sei (Balaenoptera borealis).

Pero esta historia es larga y se la contaré en la segunda temporada de Stranded things.

Referencias

-D’Agostino V.C. y col. Potentially toxic Pseudo-nitzschia species in plankton and fecal samples of Eubalaena australis from Península Valdés calving ground, Argentina. J. Sea Res. 106:39–43 (2015).
-Häusserman V. y col. Largest baleen whale mass mortality during strong El Niño event is likely related to
harmful toxic algal bloom. PeerJ. DOI: 10.7717/peerj.3123 (2017).
-Rowntree V.J. y col. Unexplained recurring high mortality of southern right whale Eubalaena australis calves at Península Valdés, Argentina. Mar. Ecol. Prog. Ser. 493:275–289 (2013).
-Wilson C. y col. Southern right whale (Eubalaena australis) calf mortality at Península Valdés, Argentina: Are harmful algal blooms to blame? Mar. Mammal Sci. 32:423–451 (2015).

Los indios que cazaban ballenas

Los Makah son una de las 566 tribus nativas americanas de EEUU reconocidas como «naciones domésticas dependientes” bajo tutela del gobierno federal. Fuente: twilight wiki. La imagen de portada es obra de Alex McCarty.

Los Makah son una tribu nativa americana de Neah Bay (WA), el extremo más noroccidental de EEUU, excluyendo Alaska.

El mar era muy importante para los Makah. El origen de su nombre (según tribus vecinas) significa «pueblo generoso con la comida«. Pero en su lengua, los Makah se hacían llamar «qwi-dich-cha-at«: el pueblo que vive cerca de las rocas y las gaviotas.

Sus tierras originales poseían densos bosques en el interior y una extensa costa, lindando con el estrecho de Juan de Fuca y el océano Pacífico.

Al igual que otras culturas indígenas aprovechaban los recursos naturales en cada época del año con una sabiduría y respeto profundos a los animales y plantas que aseguraban su sustento. La fauna marina les proveía de alimentos básicos y de enorme valor comercial, como las pieles de nutria de mar.

Territorio original de los Makah (gris) y reserva actual (polígono blanco en el extremo noroeste). Fuente: nwcoastindians

Para hacerse al mar construían largas canoas con madera de cedro rojo que podían tener velas. Los Makah eran navegantes expertos y no les preocupaba alejarse y perder de vista la tierra.

Cazaban ballenas, focas y nutrias de mar, además de pescar fletán, salmones y recolectar marisco en sus costas.

La caza de ballenas era un orgullo para los Makah y una tradición muy importante. Incluía rituales y ceremonias espirituales, e inspiraba canciones, danzas y motivos de artesanía. De ellas aprovechaban la carne y la grasa. También usaban huesos de ballena para fabricar objetos diversos y adornos personales.

El contacto con europeos a finales del s.XVIII fue desastroso para su sociedad y la transmisión de su cultura, debido a las muertes por culpa de enfermedades como la viruela y la gripe.

En 1855 firmaron un tratado con EEUU según el cual cedieron casi todo su territorio a cambio de mantener sus derechos de caza y pesca. Abandonaron la caza de ballenas a comienzos del s.XX (en 1999 capturaron la primera en 70 años), pero los productos del mar (y el marisco en particular), continúan siendo esenciales en la dieta de los Makah. Aquí quería yo llegar…

Pescadores Makah arrastrando una ballena (1914). Autor: C. Asahel. Fuente: University Libraries

El marisco de la costa oeste de Norteamérica puede contener niveles peligrosos de toxinas paralizantes debido a proliferaciones de dinoflagelados como las del género Alexandrium.

Entre las citas históricas de intoxicaciones en la costa oeste destaca la muerte de 100 cazadores rusos en 1799 tras consumir mejillones en Alaska.

Desde 1957 existe en el Estado de Washington un programa de control y análisis de toxinas en moluscos. Los cierres para evitar intoxicaciones por toxinas paralizantes (PSP, Paralytic Shellfish Poisoning) son habituales cada año entre abril y octubre en la región de los Makah. Pero ellos mantienen su propio criterio y costumbres al respecto.

Conocen perfectamente el riesgo de consumir marisco contaminado pero suelen recogerlo en zonas que consideran seguras. Y no sólo esto: un estudio antropológico reveló que muchos se creen inmunes a las toxinas. Cierto es que los Makah apenas sufren intoxicaciones.

Fiesta anual «Makah Days» (2014). Fuente: Makah.com

Su tradición oral menciona fiestas tribales en las que compartían marisco con miembros de otras tribus. Si los visitantes enfermaban, a los Makah, consumidores habituales de moluscos, no les ocurría nada.

Las toxinas paralizantes (p.ej. saxitoxinas y tetrodotoxinas) bloquean la transmisión de impulsos nerviosos al interferir en el funcionamiento normal de proteínas transmembranales (canales de sodio (Na+) dependientes de potencial), provocando parálisis neuromuscular y el síndrome PSP que puede ser mortal.

En moluscos la acumulación y eliminación de toxinas paralizantes es muy variable según la especie. La mayoría de bivalvos son relativamente insensibles porque sus nervios y músculos utilizan principalmente canales de Calcio (Ca+).

Mya arenaria. Autor: F. André. Fuente: DORIS

Pero las saxitoxinas pueden ser fatales en fases juveniles de su ciclo de vida. Como respuesta, Bricelj y col (2005) demostraron que poblaciones de almejas de Nueva Inglaterra (Mya arenaria) expuestas de manera crónica a saxitoxinas, poseían mutaciones genéticas que aumentaban 1000 veces su resistencia.

La simple sustitución de un aminoácido es responsable de esta ventaja adaptativa (peligrosa para la salud pública ya que podrían acumular más toxinas que sus congéneres «normales»).

Para descubrir si existen bases genéticas que apoyen la creencia de los Makah, Adams y col (2016) se inspiraron en el ejemplo de las almejas.

Tomaron muestras de ADN a 83 individuos (usando palillos bucales), y rastrearon aquellas mutaciones que reducirían la afinidad de la saxitoxina por el canal de Na+ en músculo esquelético (Nav 1.4).

¿Y qué encontraron? Nada, ni asomo de dichas mutaciones…

Mujer Makah (1915). Autor: E.S. Curtis. Fuente: Northwestern University

Es más: en los períodos de cierre por saxitoxinas los Makah no alteraron aparentemente sus hábitos de recolección ni de consumo de marisco. Adams y col. dejan entrever estupefacción. No tienen conclusiones del todo claras.

Descartan prácticamente otras mutaciones genéticas y siembran dos nuevas hipótesis:

<1> Quizá las concentraciones de saxitoxinas no sean lo suficientemente elevadas (las últimas muertes por PSP en la región ocurrieron en 1942) en comparación a la costa este (donde se estudiaron las almejas).

<2> Los Makah no han estado expuestos tanto tiempo como para favorecer la selección de mutaciones (los tiempos de generación en almejas y humanos no son comparables !!).

La selección natural en almejas sólo se ha demostrado en zonas expuestas a niveles muy altos de saxitoxinas a lo largo de períodos prolongados.

Formas de resistencia (quistes) de Alexandrium tamarense. Autor: David Wall. Fuente: WHOI

Un ejemplo de esto serían zonas de la costa este de Norteamérica como la Bahía de Fundy (Canadá), un «punto caliente» de saxitoxinas debidas a proliferaciones de Alexandrium, donde la almeja más consumida es Mya arenaria. Allí, los valores máximos de toxinas PSP son casi 20 veces superiores a los de la región de los Makah.

Mientras, las exposiciones cortas a niveles intermedios de toxinas producirían efectos subletales (parálisis e inhibición del crecimiento) en vez de muerte directa y selección de poblaciones resistentes.

Una cosa es cierta: el riesgo para la salud de los Makah es obvio debido a su consumo habitual de marisco en una región afectada por PSP. Y hasta que alguien demuestre lo contrario, no hay pruebas de que sean más resistentes a las toxinas.

Se desconocen los efectos subletales de la exposición crónica en humanos, pero si alguien tiene tentaciones de comerse una bandeja de mejillones/almejas/ostras/vieiras sin control de toxinas, el informe FAO sobre PSP nos despeja las dudas de un plumazo:

Célula vegetativa de A. tamarense. Fuente: dblab.rutgers.edu

«En casos leves, los síntomas clínicos de intoxicación con PSP incluyen una sensación de hormigueo o entumecimiento alrededor de los labios […] Luego el hormigueo o entumecimiento se extiende progresivamente por el rostro y el cuello. Con frecuencia, el paciente experimenta […] cefaleas, mareos, nauseas, vómitos y diarrea y, ocasionalmente, también ceguera temporal. La mayoría de los síntomas aparecen rápidamente (en cuestión de horas), pueden durar varios días […] En intoxicaciones moderadamente graves, la parestesia se extiende a los brazos y las piernas […] Con frecuencia se observan manifestaciones del cerebelo, como ataxia, falta de coordinación motora […] Las primeras dificultades respiratorias se manifiestan con una sensación de ahogo alrededor de la garganta. En casos de intoxicación grave […] entre dos y 24 horas luego de la ingestión el paciente presenta dificultades respiratorias graves y muere por parálisis respiratoria.» FAO (2005)

Referencias:

-Adams NG y col. Assessment of sodium channel mutations in Makah tribal members of the U.S. Pacific Northwest as a potential mechanism of resistance to paralytic shellfish poisoning. Harmful Algae 57:26-34 (2016).
-Bricelj VM y col. Evidence of selection for resistance to paralytic shellfish toxins during the early life history of soft-shell clam (Mya arenaria) populations. Limnol. Oceanogr. 55:2463-75 (2005).
-Estudio FAO. Alimentación y nutrición: Biotoxinas marinas. pp. 292 (2005). Disponible en FAO.