Entradas

El alga que se convirtió en león

Imagen de portada: león hambriento atacando a un antílope [H.J. Félix Rousseau, 1905. Fuente: reprodart]

«Science in Action» se emite semanalmente desde 1979.

Aplaudo con las orejas el invento de los podcasts para escuchar radio cuando y como queremos. Entre los programas que más sigo hay varios de divulgación científica y la historia de hoy la descubrí en uno de ellos.

Hace unas semanas mientras fregaba la vajilla escuchando BBC Science in Action, en el episodio «The human danger-for sharks» sonaron palabras mágicas: predators & red algae. ¡Casi rompo un plato de la emoción!

Se trataba de una charla con Patrick Keeling (UBC, Canadá) sobre el último trabajo de su grupo en Nature: un microorganismo heterótrofo relacionado con las algas rojas llamado Rhodelphis (Gawryluck y col. 2019).

[el audio dura unos 7 minutos y está aquí (en el min. 18)].

Rhodelphis. Fuente: earth.com

En su trabajo describen dos especies: en un lago (Rhodelphis limneticus) y en un fondo marino arenoso (R. marinus).

¿Por qué atrajo Rhodelphis el interés de la BBC?

La respuesta está en compararle con una planta carnívora, algo que siempre despierta morbo y curiosidad; no suele faltar una mención a la ciencia ficción y a los monstruosos trífidos.

El título de la entrada lo tomé de una respuesta a esta cuestión del presentador: ¿por qué nadie lo había descubierto aún?

Leones del Serengeti. Autor: M. Nichols. Fuente: National Geographic.

Keeling contestó que si unos extraterrestres se interesaran en estudiar el Parque del Serengeti y muestreasen 1000 animales creerían que sólo hay cebras, gacelas y ñús.

No encontrarían ningún león ¡o quizás solo uno! y pensarían que es un bicho raro y poco importante.

Pues Rhodelphis es un predador unicelular que encajaría con esos leones –escaso pero no menos importante que los seres dominantes- Interesantísimo desde el punto de vista evolutivo por ser hermano genético de las algas rojas.

La cosa tiene mucha miga, verán…

Taxonómicamente Rhodelphis pertenece al Reino Plantae. En él están las algas primarias: rojas (Rhodophyta), verdes (Viridiplantae) y glaucofíceas (Glaucophyta, de agua dulce), y también, por supuesto, las plantas terrestres.

Dichas algas primarias comparten un ancestro común eucariota que capturó a una cianobacteria dando lugar al actual cloroplasto de vegetales terrestres y microalgas. A las algas primarias también se les conoce como Archaeplastida (plástidos antiguos).

Los demás grupos del fitoplancton han adquirido la fotosíntesis incorporando cloroplastos de otras microalgas, a través de diferentes episodios de endosimbiosis sobre los cuales todavía existe discusión. Los plástidos de dichos grupos (diatomeas, dinoflagelados, etc) no son primarios y pertenecen al Reino Chromista.

La prasinofícea Cymbomonas. Las flechas indican las bacterias de las que se alimenta en cultivo. Fuente: Fig. 1, Maruyama y col. (2013).

Las algas primarias son (en su inmensa mayoría) fotosintéticas y no capturan presas para completar su alimentación.

La única excepción conocida es Cymbomonas, un alga verde (prasinofícea) capaz de ingerir bacterias aunque su fuente de energía principal –y obligatoria para sobrevivir– es la fotosíntesis.

Rhodelphis es un caso diferente y único en el Reino Plantae. No realiza fotosíntesis y a pesar de estar emparentado con las algas rojas no se parece a ellas en casi nada.

Las algas rojas son adictas a la fotosíntesis: ni se mueven con flagelos, ni se alimentan de otros seres, a todos los efectos funcionan como plantas. Rhodelphis hace justo lo contrario, es un flagelado heterótrofo que se alimenta de bacterias y eucariotas (flagelados: Kinetoplastea).

Esquema de los resultados genómicos y transcriptómicos en Rhodelphis, incluyendo al plástido «invisible». Fuente: Fig. 3, Gawryluck y col. (2019).

¿Y qué hay del plástido de Rhodelphis?

No se han observado plástidos al microscopio electrónico ni tampoco parece que posean un genoma plastidal porque no da señales de vida: Gawryluck y col. (2019) no detectaron expresión de ARN compatible con genoma de cloroplastos de algas rojas o de cianobacterias.

Pero sería muuuy raro que no existiese y deben poseer un plástido relicto. Y así parece ser. Hay evidencias moleculares a favor de su existencia: preproteínas plastidales codificadas por el núcleo de Rhodelphis.

Las preproteínas plastidales salen «etiquetadas» desde el núcleo con la dirección del plástido, igual que un paquete de correos. La etiqueta es una secuencia de aminoácidos que permite su entrada al plástido tras ser reconocida por unas translocasas (complejos proteicos) con el divertido nombre de Tic/Toc. Luego, una vez en el interior, maduran a proteínas.

Todo esto de las etiquetas y el sistema Tic/Toc aparece en Rhodelphis así que debe poseer un plástido relicto.

¿Y por qué conservar un plástido si ya no es fotosintético?

El plástido era en su origen una célula compleja, toda una cianobacteria, y su endosimbiosis con el huésped eucariota supuso mucho más que la fotosíntesis. Hubo que hacer ajustes en el genoma del huésped para integrar al endosimbionte. Para entenderlo mejor se me ocurre un símil informático…

Imaginen que queremos instalar el programa Fotosíntesis 1.0 en un ordenador con un sistema operativo X (genoma huésped). Pero que sólo fuese posible con una memoria USB (cianobacteria) que instalase otro sistema operativo Y en paralelo (genoma cianobacteria). Vaya lío.

Lo más sencillo sería actualizar el sistema operativo a XY para que todo funcione bien, Fotosíntesis 1.0 incluida!!

Pues bien. Lo que han hecho las microalgas es actualizar su sistema operativo a XY pero sin prescindir de Y. Lo han reducido a la mínima expresión.

Rhodelphis sí que lo ha eliminado por completo y aún siendo raro no es el único ejemplo conocido. Existen algunos organismos con plástidos sin genoma: un alga verde no fotosintética (Polytomella) y un parásito de moluscos (Perkinsus).

Los plástidos están implicados en tareas esenciales para el metabolismo celular como p.ej. la síntesis de grupos hemo, imprescindibles en la estructura de moléculas relacionadas con procesos como la respiración y la fotosíntesis.

A lo largo de la evolución el plástido de Rhodelphis ha perdido la función fotosintética pero sigue siendo útil y coopera probablemente con las mitocondrias en varias rutas metabólicas.

Zoosporangios de Perkinsus olseni/atlanticus. Fuente: Villalba y col. (2004).

El descubrimiento de Rhodelphis es interesante también porque supone que el ancestro común que comparte con las algas rojas era aún mixotrófico.

Es decir, durante un tiempo evolutivamente largo (posterior a la divergencia de las glaucofitas (las algas primarias más antiguas) y luego de las algas verdes), el plástido endosimbionte coexistió con la capacidad del huésped para capturar presas, quizás porque aquel no era todavía una fuente fiable de energía...

Luego, aquel organismo fotosintético dio lugar a dos ramas evolutivas que llevaron a las algas rojas y a Rhodelphis, una antigua planta que hoy en día es un predador unicelular.

Y es que las líneas del libro de la vida no se difuminan nunca del todo y el ADN de Rhodelphis conserva la huella del alga que se convirtió en león.

Referencias:

  • Gawryluk R.M.R. y col. Non-photosynthetic predators are sister to red algae. Nature, https://doi.org/10.1038/s41586-019-1398-6 (2019).
  • Gould S.B. y col. Plastid Evolution. Annu. Rev. Plant Biol. 59:491–517 (2008).
  • Maruyama S. & Kim E. A Modern descendant of early green algal phagotrophs. Curr. Biol. 23:1081–1084 (2013).
  • Smith D.R. & Lee R.W. A plastid without a genome: evidence from the nonphotosynthetic green algal genus Polytomella. Plant Physiol. 164:1812-1819 (2014).
  • Villalba A. y col. Perkinsosis in molluscs: a review. Aquat. Living Resour. 17:411–432 (2004).

El sentido de la vida, el universo y todo lo demás…

«La Guía del Autoestopista Galáctico».
Delirante novela de 1979.
En ella encontrarán a «Pensamiento profundo»

Cuando le hicieron esa pregunta al supercomputador «Pensamiento profundo» éste se lo pensó 7 millones de años y su atolondrada respuesta fue «42».

¿Qué diría «Pensamiento profundo» sobre el origen y evolución de las algasNi flowers
Pero a nosotros la «preguntita» también nos desborda.

Empecemos por el principio (lo que todos sabemos) que las algas pueden ser verdes, rojas y pardas. Y ahora vayamos a su encuentro…a la ría de Vigo, por ejemplo.

Un «prado» de algas en marea baja (Sta. Cristina de Cobres, Ría de Vigo)
Las algas verdes y rojas son «primarias», descendientes directas del primer eucariota
que capturó una cianobacteria y la convirtió en su «querido» cloroplasto endosimbionte.

Primarias son también las plantas con raíz y la mayoría del fitoplancton verde.

 
Codium 
(Monte Lourido, Nigrán)
Enteromorpha
(Playa Madorra, Nigrán)

 

 

Mesostigma viride, un alga verde
«primitiva» relacionada con los antepasados de plantas terrestres.
Fuente: página web miRNEST 2.0
Las algas rojas son el grupo más diverso de macroalgas
pero en el fitoplancton son muy rarunas.

 

Corallina officinalis, un alga roja calcárea. (Monte Lourido, Nigrán)

 

Y por último nos quedan las pardas que en realidad son algas secundarias rojas:

descienden de un eucariota que «robó» los cloroplastos a un alga roja primaria.
Hasta aquí la respuesta simple.

 

Fucus vesiculosus (Monte Lourido, Nigrán)

El fitoplancton secundario es muy diverso e importante en la ecología marina: diatomeas, dinoflagelados, cocolitofóridos y un larguísimo etcétera de pequeños flagelados…


Atención: pregunta
¿Existen algas secundarias verdes?

Habelas hainas, pero pocas y solo en el plancton: euglenofíceas, cloroaracniofíceas…y hay un dinoflagelado (Lepidodinium) que también tiene cloroplastos verdes.

La mayoría de algas secundarias han «abrazado» los cloroplastos rojos y para explicar este intrigante suceso, Grbzyek y col. publicaron en 2003 su teoría del «plástido portátil» (portable plastid). En ella sugieren que los plástidos rojos se extendieron en las algas secundarias porque conservaron más información genética. Dicha teoría se apoya en que los rojos primarios conservan hasta el doble de genes que los plástidos verdes (aprox. 200 vs 100), facilitando su funcionamiento en otra célula.

Chaetoceros lauderi es una diatomea, un ejemplo de algas secundarias
con cloroplastos rojos. Más ilustraciones al final de esta entrada…!!
Autor: Gerardo Fernández Carrera.

El ADN del antecesor de los cloroplastos fue eliminado en gran medida ó transferido al núcleo del huésped en la endosimbiosis. Y los cloroplastos secundarios han perdido todavía más genes, especialmente en los dinoflagelados.

Se trata de un proceso continuo y siempre en la misma dirección: el cloroplasto es como un «ovillo» desenredado que cede información genética al núcleo.

Si la integración genética es incompleta la asociación con el cloroplasto es temporal. El huésped necesita ingerir nuevos plástidos para reemplazar a los que se van degradando. Es lo que ocurre con algunos dinoflagelados (Dinophysis)
e invertebrados (recuerdan a Elysia chlorotica?) que poseen cloroplastos sin el «set completo» de genes «fotosintéticos».

En un escalón intermedio están las algas secundarias que conservan aún
el núcleo primario (nucleomorfo) además del cloroplasto.

En 2003, cuando Grbzyek y col. publicaron su trabajo, se habían secuenciado 10 cloroplastos.
El primer genoma completo de un alga se publicó en 2004…cuatro años después del humano !!
Hoy en día son casi 400 genomas plastidales («plastomas» mejor dicho) y más de 100 genomas de algas (completos) según el National Center for Biotechnology Information (NCBI, EEUU).

Y esta nueva información ha servido para elaborar otras teorías 
sobre el éxito de los cloroplastos rojos…



Phaeodactylum tricornutum
Fuente: Web de la CCMP,
ahora NCMA https://ncma.bigelow.org/

En 2004 y 2008 el estudio del genoma de dos diatomeas (Thalassiosira pseudonana y Phaeodactylum) mostró que en sus núcleos había más genes de origen «verde» que «rojo».
Sí, han leído bien…

Esto supondría que a pesar de tener cloroplastos rojos las diatomeas en el pasado habrían sido algas verdes !!! Y la pregunta es…Las demás algas «pardas» ¿también fueron verdes?

Pues eso parece. Porque a pesar de la transmisión horizontal de genes (que merece una entrada aparte) todo apunta a que muchos de los genes verdes son huellas de un cloroplasto «perdido»: se conservan en gran parte en todas las algas rojas secundarias analizadas…

Y el éxito de los cloroplastos rojos no estaría tanto en una mayor información genética, ya que la mayoría de genes transmitidos en la endosimbiosis proceden del núcleo (no del cloroplasto) primario.

 

Dinophysis sale de compras muy a menudo…

Según Larkum y col (2007) y su teoría de «la bolsa de la compra» (the shopping bag), la mezcla de herencia genética verde y roja dotaría a las algas secundarias rojas de un «vigor híbrido» que les permitiría colonizar una mayor diversidad de hábitats y ambientes.

Esta teoría plantea la idea de «polisimbiosis» en oposición a la visión simple de una endosimbiosis primaria, secundarias, etc.

Les cuento….

Lo que habría hecho el fitoplancton es comprar en muchas tiendas y meterlo todo en una misma bolsa. Los genomas de las algas modernas poseen información genética de distintos orígenes, independientes de su cloroplasto actual: «compras de genes» a lo largo de la evolución (no endosimbiosis duraderas) que hacen del núcleo una «quimera» de distintos antecesores + el endosimbionte moderno… 

Conclusión: reconstruir el árbol evolutivo de las algas no es fácil. Hay que remontarse mucho tiempo atrás y la «promiscuidad genética» unida a la evolución desdibujan «los contornos del paisaje»…
ó puede que no existan especies representativas de los ancestros pasados. Así que…«42».

De lo que no hay duda es de que el fitoplancton secundario ha tenido gran éxito ecológico.

Y las diatomeas son el mejor ejemplo: cercanas genéticamente a las macroalgas pardas, disfrutan de una «edad de oro» en abundancia y diversidad…de los trópicos a los polos, en la costa y más allá…!!

Con ellas les dejo, ilustradas por nuestro compañero Gerardo Fernández Carrera
(¡¡gracias!!) 
a partir de muestras de la ría de Vigo…

 

 

Pleurosigma sp. Autor de las ilustraciones: Gerardo Fernández Carrera









Referencias:

-Dorrell RG y Smith AG. Do red and green make brown? perspectives on plastid acquisitions within Chromalveolates. Euk. Cell 10(7): 856-868 (2011).
-Grzebyk D. y col.  The mesozoic radiation of eukaryotic algae: the portable plastid hypothesis. J. Phycol. 39:259-267 (2003).
-Larkum A.W.D. y col. Shopping for plastids. Trends Plant Sci. 12(5): 189-195 (2007).