Entradas

La importancia de llamarse Alexandrium

Este blog es monotemático: algas, algas y más algas!! Consciente de que el menú puede caerles pesado mezclo a menudo otros ingredientes (como el queso, el aceite de oliva y el pollo sobre una lechuga iceberg).

Odontella aurita. Autor: Pavel Skaloud. Fuente: botany.natur.cuni.cz

Hoy les serviré una “lechuga” enorme (la taxonomía de Alexandrium) con un “pollo” muy sabroso (un debate entre científicos).

Odontella aurita (Agardh, 1832) es una bella diatomea que ha cambiado de nombre sólo una vez desde su descripción original como Diatoma aurita (Lingbye, 1819)

Callithrix aurita. Autor: Sávio Bruno. Fuente: Arkive.org

Su nombre, aurita, quiere decir “orejas largas”. En la diatomea hay que echarle mucha imaginación, pero hay otras especies en las que el epíteto “aurita” resulta evidente y más que justificado. Como en el mono tití Callithrix aurita.

Las algas no tienen orejas pero sí otros atributos que inspiran muchas veces sus nombres.

Por ejemplo, Alexandrium catenella, descrita como una especie formadora de cadenas, protagonista de la entrada de hoy.

El género Alexandrium lo describió Youssef Halim (1960) después de una marea roja de Alexandrium minutum (la especie tipo, diminuta) en el puerto de Alejandría (Egipto, imagen de portada).

En Alexandrium se encuentran diversas especies productoras de toxinas paralizantes (saxitoxinas), responsables de algunas de las proliferaciones más dañinas del mundo, tanto para la fauna marina como para la salud pública.

Muchas especies del género Alexandrium se describieron a lo largo del s.XX originalmente como Gonyaulax o Protogonyaulax, en base a criterios morfológicos: la “fórmula” de sus placas (numeración y organización), dimensiones de las células, y otros caracteres como la capacidad de formar cadenas o la presencia de un porito en la zona ventral (en la primera placa apical, donde se insertan los flagelos de la célula).

Ilustraciones originales de Whedon & Kofoid (1936). Fuente: WORMS

Por ejemplo, en 1925, Marie V. Lebour describió un pequeño organismo, Goniaulax tamarensis, en el estuario del río Tamar cerca de Plymouth (Reino Unido). Dicha especie (=Alexandrium tamarense) sabemos hoy en día que no es tóxica.

En 1936, Whedon y Kofoid describieron con gran profusión de detalles dos organismos: Gonyaulax catenella y acatenella, responsables de intoxicaciones por consumo de moluscos bivalvos en la costa de California (EEUU).

G. catenella era “achatada” y formaba cadenas (4 o más células), mientras que G. acatenella constaba sólo de células individuales.

Lo que no sabían era que ninguna especie forma cadenas todo el tiempo y que dicha capacidad varía según el estado fisiológico y el ciclo de vida.

Evolución temporal de G. catenella (línea continua, logaritmo de céls/litro) y G. acatenella (discontinua). Fuente: Whedon & Kofoid (1936)

 

No se trataba de especies distintas sino del desarrollo y caída de una población (que forma cadenas en la fase activa de crecimiento y se disgregan en células individuales al final de la proliferación).

A lo largo del s.XX se describieron nuevas especies de Gonyaulax y Alexandrium hasta que en 1985 Enrique Balech transfirió muchas de las primeras al género Alexandrium, describiendo 7 nuevas especies, entre ellas Alexandrium fundyense.

Su descripción era sucinta, apenas un par de frases:”very close to A. excavatum but constantly lacking ventral pore. Perhaps a subspecies […]. Distribution in the Bay of Fundy”.

Bahía de Fundy. Fuente: www.ferries.ca

En la bahía de Fundy (Canadá) se había identificado también otra especie similar: el Alexandrium tamarense de Lebour, que sólo se diferenciaba en la presencia del susodicho “porito”. Pero este A. tamarense sí era tóxico, a diferencia del “original”. Vaya lío…

Con el tiempo resultó evidente que existían una variedad de formas intermedias entre A. tamarense/A. catenella/A. fundyense y que los criterios morfológicos que se habían establecido para diferenciarlas eran variables. Es decir, se trataba de especies crípticas difícilmente distinguibles bajo el microscopio.

Y llegó la genética para barajar otra vez las cartas...

En los 90′ la aplicación de técnicas moleculares revolucionó el panorama. Las secuencias genéticas de los cultivos de A. tamarense/A. fundyense/A. catenella formaban parte del “complejo de especies Alexandrium tamarense“, cinco grupos moleculares cercanos, aunque claramente diferenciados. Al principio se les designó por el origen geográfico pero luego se demostró que este criterio tampoco servía y se optó por lo fácil: emplear números del I al V.

IMPORTANTE: en Norteamérica y Suramérica sólo se ha detectado el Grupo I.

Distribución geográfica de grupos del complejo “A. tamarense“: I (círculos), II (cuadrados), III (triángulos), IV (diamantes), V (estrellas). En negro los grupos tóxicos. Fuente: Fig. 1, Lilly y col. (2007)

Los V grupos genéticos del complejo “A. tamarense” se añadieron a la denominación de especies tradicional y se usaron durante dos décadas para identificar con mayor precisión la naturaleza de los cultivos (solo eran tóxicos los grupos I y IV).

Estos grupos sugerían la existencia de distintas especies pero nadie atacó este asunto hasta 2014 cuando John y col. propusieron las siguientes equivalencias: A. fundyense (grupo I), A. mediterraneum (grupo II), A. tamarense (grupo III), A. pacificum (grupo IV) y A. australiense (grupo V).

Alexandrium catenella (islas Huichas, región de Aysén, Chile). Autor: Pablo Salgado

 

Los más atentos echaréis de menos una especie: A. catenella

John y col. optaron por A. fundyense para el Grupo I dado que todas las secuencias con ese nombre pertenecen a dicho grupo genético, desechando la denominación de A. catenella en base a razonamientos bastante discutibles.

La historia podía haber terminado ahí, pero ¿quién dijo miedo? John y col. se lo jugaron todo a doble o nada. Sometieron su decisión de borrar del mapa a Alexandrium catenella a las más altas instancias taxonómicas con una propuesta oficial (2302) a la revista Taxon.

Esta revista publica los informes del comité para la nomenclatura de las algas, (algo así como el “Tribunal Supremo Taxonómico”), que otorga validez a las especies siguiendo el “código de Melbourne” (ICN: código Internacional de nomenclatura para algas, hongos y plantas).

La propuesta 2302 cosechó también en Taxon la respuesta de otro grupo de investigadores, Fraga y col. (2015) quienes, como abogados defensores de A. catenella, publicaron una réplica rebatiendo 6 razonamientos de John y col. Entre ellos elegí el nº5:

Alexandrium catenella (epifluorescencia, teñido con calcoflúor). Autor: Pablo Salgado

John y col.:Alexandrium catenella podría en principio sustituir al nombre de A. fundyense y aplicarse a todos los cultivos del Grupo I porque su descripción original (Whedon & Kofoid, l.c.) es anterior a la de A. fundyense (Balech, l.c. 1985). Sin embargo muchos estudios sobre cultivos del Grupo I han utilizado el nombre de A. fundyense y el cambio de nomenclatura provocaría una considerable confusión a la comunidad científica”.

 

Fraga y col.: “De acuerdo con el Art. 51.1 del ICN “un nombre legítimo no debe ser rechazado meramente porque su epíteto es inapropiado o desagradable, o porque otro sea preferible o más conocido […] o porque ha perdido su significado original”.

 

Alexandrium catenella tenía prioridad según el ICN simplemente por antigüedad (1936 vs 1985). Por si fuera poco, su descripción original era mucho más completa que la de A. fundyense.

En la localidad original de A. catenella (región de S. Francisco, California) sólo se han descrito secuencias del Grupo I y tanto investigadores como personal involucrado en la vigilancia de las frecuentes proliferaciones tóxicas de Alexandrium en la costa oeste de Norteamérica, Chile, Argentina y el suroeste de África reconocen históricamente el término A. catenella. Mientras, A. fundyense se ha empleado principalmente en estudios locales de la costa este de Norteamérica, en la bahía de Fundy  y golfo de Maine. Pero en la justicia todo es posible y hasta que el juez dicta sentencia no hay nada escrito.

Y el “juez” se pronunció en febrero de 2017. El comité para la nomenclatura de las algas publicó en Taxon su informe nº15 en el cual (por 12 votos a favor y 1 en contra), rechazaba la propuesta 2302 convencida por los argumentos de Fraga y col., dando prioridad a la nomenclatura de A. catenella sobre A. fundyense (Fin)

Agradecimientos: a Santi Fraga por información empleada para elaborar esta entrada.

Referencias:

-Fraga S. y col. Arguments against the proposal 2302 by John & al. to reject the name Gonyaulax catenella (Alexandrium catenella). Taxon 64:634-635 (2015)
-John U. y col. Formal Revision of the Alexandrium tamarense Species Complex (Dinophyceae) Taxonomy: The Introduction of Five Species with Emphasis on Molecular-based (rDNA) Classification. Protist 165:779-804 (2014)
-John U. y col. (2302) Proposal to reject the name Gonyaulax catenella (Alexandrium catenella) (Dinophyceae). Taxon 63: 932-933 (2014)
-Lilly E.L. y col. Species boundaries and global biogeography of the Alexandrium tamarense complex (Dinophyceae). J. Phycol. 43:1329-1338 (2007)
-Prud’homme van Reine W.F. Report of the Nomenclature Committee for Algae: 15. Taxon 66:191-192 (2017)
-Whedon WF & Kofoid CA. Dinoflagellata of the San Francisco Region. I. on the skeletal morphology of two new species: Gonyaulax catenella and G. catenella. Univ. Calif. Publ. Zool. 41:25-34 (1936)

Los indios que cazaban ballenas

Los Makah son una de las 566 tribus nativas americanas de EEUU reconocidas como “naciones domésticas dependientes” bajo tutela del gobierno federal. Fuente: twilight wiki. La imagen de portada es obra de Alex McCarty.

Los Makah son una tribu nativa americana de Neah Bay (WA), el extremo más noroccidental de EEUU, excluyendo Alaska.

El mar era muy importante para los Makah. El origen de su nombre (según tribus vecinas) significa “pueblo generoso con la comida“. Pero en su lengua, los Makah se hacían llamar “qwi-dich-cha-at“: el pueblo que vive cerca de las rocas y las gaviotas.

Sus tierras originales poseían densos bosques en el interior y una extensa costa, lindando con el estrecho de Juan de Fuca y el océano Pacífico.

Al igual que otras culturas indígenas aprovechaban los recursos naturales en cada época del año con una sabiduría y respeto profundos a los animales y plantas que aseguraban su sustento. La fauna marina les proveía de alimentos básicos y de enorme valor comercial, como las pieles de nutria de mar.

Territorio original de los Makah (gris) y reserva actual (polígono blanco en el extremo noroeste). Fuente: nwcoastindians

Para hacerse al mar construían largas canoas con madera de cedro rojo que podían tener velas. Los Makah eran navegantes expertos y no les preocupaba alejarse y perder de vista la tierra.

Cazaban ballenas, focas y nutrias de mar, además de pescar fletán, salmones y recolectar marisco en sus costas.

La caza de ballenas era un orgullo para los Makah y una tradición muy importante. Incluía rituales y ceremonias espirituales, e inspiraba canciones, danzas y motivos de artesanía. De ellas aprovechaban la carne y la grasa. También usaban huesos de ballena para fabricar objetos diversos y adornos personales.

El contacto con europeos a finales del s.XVIII fue desastroso para su sociedad y la transmisión de su cultura, debido a las muertes por culpa de enfermedades como la viruela y la gripe.

En 1855 firmaron un tratado con EEUU según el cual cedieron casi todo su territorio a cambio de mantener sus derechos de caza y pesca. Abandonaron la caza de ballenas a comienzos del s.XX (en 1999 capturaron la primera en 70 años), pero los productos del mar (y el marisco en particular), continúan siendo esenciales en la dieta de los Makah. Aquí quería yo llegar…

Pescadores Makah arrastrando una ballena (1914). Autor: C. Asahel. Fuente: University Libraries

El marisco de la costa oeste de Norteamérica puede contener niveles peligrosos de toxinas paralizantes debido a proliferaciones de dinoflagelados como las del género Alexandrium.

Entre las citas históricas de intoxicaciones en la costa oeste destaca la muerte de 100 cazadores rusos en 1799 tras consumir mejillones en Alaska.

Desde 1957 existe en el Estado de Washington un programa de control y análisis de toxinas en moluscos. Los cierres para evitar intoxicaciones por toxinas paralizantes (PSP, Paralytic Shellfish Poisoning) son habituales cada año entre abril y octubre en la región de los Makah. Pero ellos mantienen su propio criterio y costumbres al respecto.

Conocen perfectamente el riesgo de consumir marisco contaminado pero suelen recogerlo en zonas que consideran seguras. Y no sólo esto: un estudio antropológico reveló que muchos se creen inmunes a las toxinas. Cierto es que los Makah apenas sufren intoxicaciones.

Fiesta anual “Makah Days” (2014). Fuente: Makah.com

Su tradición oral menciona fiestas tribales en las que compartían marisco con miembros de otras tribus. Si los visitantes enfermaban, a los Makah, consumidores habituales de moluscos, no les ocurría nada.

Las toxinas paralizantes (p.ej. saxitoxinas y tetrodotoxinas) bloquean la transmisión de impulsos nerviosos al interferir en el funcionamiento normal de proteínas transmembranales (canales de sodio (Na+) dependientes de potencial), provocando parálisis neuromuscular y el síndrome PSP que puede ser mortal.

En moluscos la acumulación y eliminación de toxinas paralizantes es muy variable según la especie. La mayoría de bivalvos son relativamente insensibles porque sus nervios y músculos utilizan principalmente canales de Calcio (Ca+).

Mya arenaria. Autor: F. André. Fuente: DORIS

Pero las saxitoxinas pueden ser fatales en fases juveniles de su ciclo de vida. Como respuesta, Bricelj y col (2005) demostraron que poblaciones de almejas de Nueva Inglaterra (Mya arenaria) expuestas de manera crónica a saxitoxinas, poseían mutaciones genéticas que aumentaban 1000 veces su resistencia.

La simple sustitución de un aminoácido es responsable de esta ventaja adaptativa (peligrosa para la salud pública ya que podrían acumular más toxinas que sus congéneres “normales”).

Para descubrir si existen bases genéticas que apoyen la creencia de los Makah, Adams y col (2016) se inspiraron en el ejemplo de las almejas.

Tomaron muestras de ADN a 83 individuos (usando palillos bucales), y rastrearon aquellas mutaciones que reducirían la afinidad de la saxitoxina por el canal de Na+ en músculo esquelético (Nav 1.4).

¿Y qué encontraron? Nada, ni asomo de dichas mutaciones…

Mujer Makah (1915). Autor: E.S. Curtis. Fuente: Northwestern University

Es más: en los períodos de cierre por saxitoxinas los Makah no alteraron aparentemente sus hábitos de recolección ni de consumo de marisco. Adams y col. dejan entrever estupefacción. No tienen conclusiones del todo claras.

Descartan prácticamente otras mutaciones genéticas y siembran dos nuevas hipótesis:

<1> Quizá las concentraciones de saxitoxinas no sean lo suficientemente elevadas (las últimas muertes por PSP en la región ocurrieron en 1942) en comparación a la costa este (donde se estudiaron las almejas).

<2> Los Makah no han estado expuestos tanto tiempo como para favorecer la selección de mutaciones (los tiempos de generación en almejas y humanos no son comparables !!).

La selección natural en almejas sólo se ha demostrado en zonas expuestas a niveles muy altos de saxitoxinas a lo largo de períodos prolongados.

Formas de resistencia (quistes) de Alexandrium tamarense. Autor: David Wall. Fuente: WHOI

Un ejemplo de esto serían zonas de la costa este de Norteamérica como la Bahía de Fundy (Canadá), un “punto caliente” de saxitoxinas debidas a proliferaciones de Alexandrium, donde la almeja más consumida es Mya arenaria. Allí, los valores máximos de toxinas PSP son casi 20 veces superiores a los de la región de los Makah.

Mientras, las exposiciones cortas a niveles intermedios de toxinas producirían efectos subletales (parálisis e inhibición del crecimiento) en vez de muerte directa y selección de poblaciones resistentes.

Una cosa es cierta: el riesgo para la salud de los Makah es obvio debido a su consumo habitual de marisco en una región afectada por PSP. Y hasta que alguien demuestre lo contrario, no hay pruebas de que sean más resistentes a las toxinas.

Se desconocen los efectos subletales de la exposición crónica en humanos, pero si alguien tiene tentaciones de comerse una bandeja de mejillones/almejas/ostras/vieiras sin control de toxinas, el informe FAO sobre PSP nos despeja las dudas de un plumazo:

Célula vegetativa de A. tamarense. Fuente: dblab.rutgers.edu

“En casos leves, los síntomas clínicos de intoxicación con PSP incluyen una sensación de hormigueo o entumecimiento alrededor de los labios […] Luego el hormigueo o entumecimiento se extiende progresivamente por el rostro y el cuello. Con frecuencia, el paciente experimenta […] cefaleas, mareos, nauseas, vómitos y diarrea y, ocasionalmente, también ceguera temporal. La mayoría de los síntomas aparecen rápidamente (en cuestión de horas), pueden durar varios días […] En intoxicaciones moderadamente graves, la parestesia se extiende a los brazos y las piernas […] Con frecuencia se observan manifestaciones del cerebelo, como ataxia, falta de coordinación motora […] Las primeras dificultades respiratorias se manifiestan con una sensación de ahogo alrededor de la garganta. En casos de intoxicación grave […] entre dos y 24 horas luego de la ingestión el paciente presenta dificultades respiratorias graves y muere por parálisis respiratoria.” FAO (2005)

Referencias:

-Adams NG y col. Assessment of sodium channel mutations in Makah tribal members of the U.S. Pacific Northwest as a potential mechanism of resistance to paralytic shellfish poisoning. Harmful Algae 57:26-34 (2016).
-Bricelj VM y col. Evidence of selection for resistance to paralytic shellfish toxins during the early life history of soft-shell clam (Mya arenaria) populations. Limnol. Oceanogr. 55:2463-75 (2005).
-Estudio FAO. Alimentación y nutrición: Biotoxinas marinas. pp. 292 (2005). Disponible en FAO.

 

 

 

Matar algas tóxicas (y todo lo demás)

A.K. Geim es la única persona
que ha ganado el Nobel y el Ig Nobel.
Fuente: improbable research

Los premios Ig Nobel se conceden a logros científicos que “primero hacen reír y luego pensar”,
aunque a mí me gustaba más su lema original en los 90′: 
“premiar descubrimientos que no pueden ó no deberían ser reproducidos”.

En el año 2000 el físico ruso Andre Geim ganó un Ig Nobel por hacer levitar (magneticamente) a una rana. Y en el 2001 publicó otro artículo en el que firmaba con su mascota, un hamster!! al que también hizo flotar en el aire…

Divertido, sí. Pero además de buen humor Andre Geim también tiene el premio Nobel (el de verdad) que ganó en 2010 por sus investigaciones con el grafeno…!!

En los Ig Nobel de este año, celebrados el 18 de septiembre en la Universidad de Harvard, me llamó la atención el premio en la categoría de “salud pública” concedido a varios investigadores por intentar comprender si tener un gato puede perjudicar mentalmente a sus dueños.
El tema me toca de cerca….

C.A.T. Sheldon (mi gato) no firma artículos, todavía…

Uno de esos estudios, publicado en la revista de acceso público Plos One, se titula “Describing the Relationship between Cat Bites and Human Depression Using Data from an Electronic Health Record”.

En él seleccionaron a un grupo de personas con depresión y/ó mordiscos:
750 con mordiscos de gatos, 1108 con mordiscos de perros y 117.000 con depresión.

Analizaron estadisticamente los datos y observaron que el 40% de las personas con mordiscos de gatos tenían depresión. Y esto no afecta por igual a ambos sexos: el 85% resultaron ser mujeres.
La conclusión es preocupante: los mordiscos de gatos podrían alertar a los médicos sobre posibles casos de depresión entre sus pacientes, especialmente mujeres. Y terminan así: “while no causative link is known to explain this association, there is growing evidence to suggest that the relationship between cats and human mental illness, such as depression, warrants further investigation”. O sea que quieren seguir investigando por qué es más probable que caigas en un pozo de tristeza si tu gatito te mordisquea a menudo…!!

Corramos un tupido velo y vayámonos con las algas a Holanda porque allí se hizo un estudio que merecería ganar un Ig Nobel. Su título es “Termination of a toxic Alexandrium bloom with hydrogen peroxide” y lo publicaron Burson y col. (2014) en la revista Harmful Algae.

 

Ouwerkerkse Kreek (Holanda). Fuente: Nationaal Park Oosterschelde

La historia comenzó en agosto de 2012 cuando apareció un perrito muerto con grandes cantidades de saxitoxina en su cuerpo (una poderosa neurotoxina que provoca parálisis y en casos graves la muerte). ¿Cómo se intoxicó? no se sabe, pero el animal estaba cerca de un arroyo salobre, Ouwerkerkse Kreek.
Se trata de un área recreativa con terrenos agrícolas, conectada por un canal a un estuario en el que hay grandes extensiones de cultivos de mejillones, ostras y berberechos.

Y en el análisis del agua encontraron entre 1 y 2 millones de células por litro del dinoflagelado tóxico Alexandrium ostenfeldiial que pueden ver en este vídeo…
Saltó la alarma y la zona se cerró al público. Justo entonces cayó una lluvia torrencial que amenazaba con desbordar el arroyo e inundar las zonas agrícolas. Había que tomar medidas, y pronto…
En el mapa está marcada la zona de riesgo por culpa de A. ostenfeldii.
El canal estrecho comunica directamente con el estuario y los cultivos
de marisco. Fuente:duikplaats.net

Tenían que decidir entre susto (desaguar el arroyo abriendo el canal y verter el Alexandrium tóxico a los mejillones), ó muerte (eliminar la proliferación tóxica por lo civil ó lo criminal…!!)

No olvidemos que es un problema que hemos creado nosotros mismos.

La escorrentía de los fertilizantes en los campos cultivados puede provocar eutrofización de las aguas costeras y continentales, que a su vez favorecen las proliferaciones (tóxicas ó no) de algas. Reducir el exceso de nutrientes contribuiría a evitar el crecimiento descontrolado de algas.

Y ésa, tal como reconocen Burson y col., sería la buena solución a medio/largo plazo. 

Pero hacía falta algo rápido. Un ejemplo de este tipo de soluciones “relámpago” es el vertido de arcilla para provocar la sedimentación y muerte de las microalgas, tal como hacen en Corea. Sin embargo, las características de este arroyo cerrado y poco profundo no hacían viable esta opción. La cuestión era si podían echar algo mortífero sin dejar residuos tóxicos en el medio ambiente…¿Y qué pasó al final?

La cianobacteria tóxica Planktothrix agardhii.
Su proliferación en un lago holandés fue eliminada
con agua oxigenada. Fuente: biolib.cz

Que se decantaron por el peróxido de hidrógeno (agua oxigenada), la misma que se usó en un lago holandés y algunos embalses para eliminar cianobacterias tóxicas. El agua oxigenada se libera de forma natural en las células durante la respiración y la fotosíntesis.
Es en cantidades excesivas cuando sus efectos pueden ser letales por la liberación de radicales hidroxilo (OH) que dañan las membranas celulares, proteínas y ácidos nucleicos. 

Las cianobacterias son más sensibles al peróxido de hidrógeno que las células eucariotas. Esto es una ventaja ya que las concentraciones letales para ellas apenas afectan al plancton eucariota.

Pero los dinoflagelados son eucariotas, así que en este caso hicieron una prueba en el laboratorio para calcular la dosis necesaria y luego comprobaron las consecuencias biológicas en un canal cercano al arroyo.
Una vez convencidos de la bondad del método, se decidieron a “limpiar” el arroyo como si de una herida infectada se tratara, eso sí –con una superficie de 12 hectáreas y 425 millones de litros de agua–

Después de conseguir el permiso de las autoridades, anunciar la operación en todos los medios de comunicación y cerrar la zona, cargaron 15.000 litros de agua oxigenada en camiones cisterna hasta una barcaza en el arroyo. Y desde allí los vertieron y estudiaron los efectos.

El espinoso ó espinocho (Gasterosterus aculeatus).
Un pez muy flojo que no aguanta el agua oxigenada.
Fuente: peatom.info

En 48 horas desapareció el 99.8% de las células de Alexandrium del agua…y con él un 94% del fitoplancton, la práctica totalidad del zooplancton y subieron bastante los valores de nitritos y amonio…hecatombe microscópica.

Respecto a los macroinvertebrados y peces, dicen que los resultados no fueron muy graves: entre los daños colaterales contabilizaron 40 peces espinosos muertos, algunos poliquetos, una anguila, y una cantidad indeterminada de crustáceos maltrechos.
Coste total de la operación: 375.000 euros
¿Fin del problema?…rotundamente no.

Porque el ciclo de vida de Alexandrium ostenfeldii, como el de muchos otros dinoflagelados, incluye a los quistes que se refugian en el sedimento y luego germinarán dando lugar a una nueva población. Y además, ni el arroyo está cerrado al mar ni murieron todas las células que había en el agua…

Ouwerkerkse Kreek. Fuente: ad.nl (1/8/2013)
El cartel dice “evitar el contacto con el agua por su mala calidad”

La mejor prueba de que no funciona es la imagen de la derecha, tomada un año después, con un cartel que avisa otra vez de la mala calidad del agua por culpa de Alexandrium ostenfeldii.

Por tanto la guerra química puede ser efectiva de forma inmediata más no erradica el problema.

Por no decir que es una auténtica cafrada medioambiental, matar moscas a cañonazos

Lo peor es que ahora estas decisiones tan poco ecológicas se pueden intentar justificar porque hay un estudio publicado en una revista científica seria. 

 

Referencias:
-Burson A y col. Termination of a toxic Alexandrium bloom with hydrogen peroxide. Harmful Algae 31:125-135 (2014).
-Matthijs HCP y col. Selective suppression of harmful cyanobacteria in an entire lake with hydrogen peroxide. Water Research 46:1460-1472 (2012).

Bahía fosforescente

Parece un besugo, pero es un pargo
Imagen disponible en http://www.pescasubrj.br

Al suroeste de la isla de Puerto Rico hay un municipio llamado Lajas, en el cual se encuentra el poblado costero de La Parguera. Se llama así por los pargos, abundantes en la pesca de esta región.

Aparte de otros atractivos turísticos que no tengo la suerte de conocer, en La Parguera existe un fenómeno natural espectacular: una bahía fosforescente. Tal cual, ése es su nombre, en inglés “Phosphorescent Bay”. Y no es la única en Puerto Rico.

La mala noticia es que la contaminación parece haber reducido la bioluminiscencia de esta bahía, y son otras dos, en Vieques y en Fajardo, las que mejor conservan sus encantos luminosos…de momento.

Bahía Mosquito, en Vieques (Puerto Rico).
Autor: Travis Hlavka.
http://liferoo.com/entry-comment/599/#photo-225

La bioluminiscencia en estas bahías de Puerto Rico es un reclamo turístico ya que la podemos observar a lo largo de todo el año. Viendo estas imágenes ya me tarda en salir el avión…! 

Esta belleza es posible gracias al clima subtropical, los nutrientes de los manglares que rodean la bahía, y el estrecho canal que limita la comunicación con el océano. Los responsables de esta fosforescencia son los dinoflagelados, en concreto Pyrodinium bahamense.
Pyrodinium es un género con una sola especie. Aunque hay 2 variedades, con distribución geográfica separada: en el Atlántico se encuentra Pyrodinium bahamense var. bahamense y en el Pacífico Pyrodinium bahamense var. compressum. Como el propio nombre indica, el Pyrodinium del Pacífico tiene forma “comprimida“, como si lo hubiesen “pisado”…
Imágenes de Microbewiki (compressum), Marine Species Portal (bahamense) y GoogleMaps.

Pero todo cuento de “hadas” tiene su lado oscuro, porque Pyrodinium es un dinoflagelado productor de toxinas paralizantes: saxitoxinas. Es la especie que afecta a más personas por síndrome paralizante, hasta el punto de causar más muertes que ningún otro dinoflagelado en el mundo por dichas toxinas.

Un lindo pez globo….
Por citar uno de los muchos ejemplos tanto en el Sudeste Asiático como Centroamérica: en 1987 en Guatemala, 187 personas fueron hospitalizadas por comer almejas contaminadas y 26 fallecieron. La muerte se produce por parálisis respiratoria entre 2 a 24 hrs después de la intoxicación.
Da miedo, sí.

Hasta hace poco se pensaba que sólo era tóxico el “compressum” del Pacífico, pero en 2002 se descubrió que la variedad “bahamense” del Atlántico tropical, aislada en Florida, también producía saxitoxinas.
Y se supo después de varios casos de intoxicación por causa de comer peces globo…

La laguna bioluminiscente de Vieques.
Autor: Frank Llosa.
http://www.anfrix.com

Pero lo que hay que aclarar es que no pasa absolutamente nada por bañarse en una mancha de Pyrodinium. Sus toxinas, igual que sucede con cualquier otro alga tóxica, tienen que acumularse en la cadena alimentaria a través del pescado ó marisco. Así es como pueden llegar a una concentración peligrosa para las personas.

Si bebemos un poco de Pyrodinium mientras chapoteamos en el agua fosforescente lo único que nos va a sentar mal es la propia agua salada…!!



Referencias:

-Azanza RV, Taylor FJ. Are Pyrodinium blooms in the South East Asian region recurring and spreading? a view at the end of the millennium. Ambio 30:656-664 (2001).
-Biology, epidemiology and management of Pyrodinium red tides. Proceedings of the Management and Training Workshop Bandar Seri Begawan, Brunei Darussalam. Eds. Hallegraeff & McLean (1989).
-Usup G. et al. Biology, ecology and bloom dynamics of the toxic dinoflagellate Pyrodinium bahamense. Harmful Algae 14:301-312 (2012).